These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 3215330)

  • 21. Fast modulation of prefrontal cortex activity by basal forebrain noncholinergic neuronal ensembles.
    Lin SC; Gervasoni D; Nicolelis MA
    J Neurophysiol; 2006 Dec; 96(6):3209-19. PubMed ID: 16928796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Oxygen consumption and "critical" oxygen tension for the cerebral cortex in situ].
    Ivanov KP; Kalinina MK
    Fiziol Zh SSSR Im I M Sechenova; 1972 Oct; 58(10):1469-75. PubMed ID: 4648048
    [No Abstract]   [Full Text] [Related]  

  • 23. Neurons immunoreactive for vasoactive intestinal polypeptide in the rat primary somatosensory cortex: morphology and spatial relationship to barrel-related columns.
    Bayraktar T; Welker E; Freund TF; Zilles K; Staiger JF
    J Comp Neurol; 2000 May; 420(3):291-304. PubMed ID: 10754503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo imaging of the rat cerebral microvessels with optical coherence tomography.
    Satomura Y; Seki J; Ooi Y; Yanagida T; Seiyama A
    Clin Hemorheol Microcirc; 2004; 31(1):31-40. PubMed ID: 15272151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct and indirect activation of cortical neurons by electrical microstimulation.
    Tehovnik EJ; Tolias AS; Sultan F; Slocum WM; Logothetis NK
    J Neurophysiol; 2006 Aug; 96(2):512-21. PubMed ID: 16835359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxygen consumption and mitochondrial membrane potential indicate developmental adaptation in energy metabolism of rat cortical neurons.
    Schuchmann S; Buchheim K; Heinemann U; Hosten N; Buttgereit F
    Eur J Neurosci; 2005 May; 21(10):2721-32. PubMed ID: 15926920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic control of intestinal oxygenation and blood flow.
    Shepherd AP
    Fed Proc; 1982 Apr; 41(6):2084-9. PubMed ID: 7075783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Associations between neuropeptide Y nerve terminals and intraparenchymal microvessels in rat and human cerebral cortex.
    Abounader R; Hamel E
    J Comp Neurol; 1997 Nov; 388(3):444-53. PubMed ID: 9368852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tissue oxygen tension during regional low-flow perfusion in neonates.
    DeCampli WM; Schears G; Myung R; Schultz S; Creed J; Pastuszko A; Wilson DF
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):472-80. PubMed ID: 12658188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The pharmacological testing of intracortical interneuronal connections].
    Gasanov UG; Martinson IuL; Khokhlova VN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1994; 44(6):1016-25. PubMed ID: 7879425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Initial oligemia with capillary flow stop followed by hyperemia during K+-induced cortical spreading depression in rats.
    Tomita M; Schiszler I; Tomita Y; Tanahashi N; Takeda H; Osada T; Suzuki N
    J Cereb Blood Flow Metab; 2005 Jun; 25(6):742-7. PubMed ID: 15729294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of PO(2) profiles to describe the oxygen pressure field within the tissue.
    Baumgärtl H; Zimelka W; Lübbers DW
    Comp Biochem Physiol A Mol Integr Physiol; 2002 May; 132(1):75-85. PubMed ID: 12062194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microelectrode studies in the brain of fetal rats and new born rats.
    Erdmann W
    Adv Exp Med Biol; 1977 Jul 4-7; 94():455-61. PubMed ID: 613788
    [No Abstract]   [Full Text] [Related]  

  • 35. Study of brain capillary neuronal regulation as a tool to investigate cerebral asymmetries.
    Magnoni MS; Govoni S; Cappellato G; Trabucchi M
    Funct Neurol; 1986; 1(2):105-11. PubMed ID: 2886404
    [No Abstract]   [Full Text] [Related]  

  • 36. Micromethods for monitoring local tissue oxygen supply and microcirculation.
    Lübbers DW; Baumgärtl H; Grunewald W; Leniger-Follert E; Wodick R
    Bibl Anat; 1975; 13():53-6. PubMed ID: 1231790
    [No Abstract]   [Full Text] [Related]  

  • 37. Local tissue PO2 and microflow of the brain cortex under varying arterial oxygen pressure.
    Leniger-Follert E; Wrabetz W; Lübbers DW
    Adv Exp Med Biol; 1976; 75():361-7. PubMed ID: 1015416
    [No Abstract]   [Full Text] [Related]  

  • 38. Staining PO2 measurement sites in the rat brain cortex and quantitative morphometry of the surrounding capillaries.
    Metzger H; Heuber-Metzger S; Steinacker A; Strüber J
    Pflugers Arch; 1980 Oct; 388(1):21-7. PubMed ID: 6160452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Magnitude of oxygen tension in neurons (according to data from in vivo measurements and calculations of neuron-capillary relations)].
    Kisliakov IuIa; Samoĭlov MO; Ivanov KP
    Dokl Akad Nauk SSSR; 1976 Jan; 226(1):234-6. PubMed ID: 1248358
    [No Abstract]   [Full Text] [Related]  

  • 40. Oxygen supply and microcirculation of the brain cortex.
    Leniger-Follert E
    Adv Exp Med Biol; 1985; 191():3-19. PubMed ID: 3914205
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.