These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 32153346)

  • 1. A disk-aware algorithm for time series motif discovery.
    Mueen A; Keogh E; Zhu Q; Cash SS; Westover MB; Bigdely-Shamlo N
    Data Min Knowl Discov; 2011 Jan; 22(1-2):73-105. PubMed ID: 32153346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact Discovery of Time Series Motifs.
    Mueen A; Keogh E; Zhu Q; Cash S; Westover B
    Proc SIAM Int Conf Data Min; 2009; 2009():473-484. PubMed ID: 31656693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping.
    Rakthanmanon T; Campana B; Mueen A; Batista G; Westover B; Zhu Q; Zakaria J; Keogh E
    KDD; 2012 Aug; 2012():262-270. PubMed ID: 31660254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIMIT: Subjectively Interesting Motifs in Time Series.
    Deng J; Lijffijt J; Kang B; De Bie T
    Entropy (Basel); 2019 Jun; 21(6):. PubMed ID: 33267280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Addressing Big Data Time Series: Mining Trillions of Time Series Subsequences Under Dynamic Time Warping.
    Rakthanmanon T; Campana B; Mueen A; Batista G; Westover B; Zhu Q; Zakaria J; Keogh E
    ACM Trans Knowl Discov Data; 2013 Sep; 7(3):. PubMed ID: 31607834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IncMD: incremental trie-based structural motif discovery algorithm.
    Badr G; Al-Turaiki I; Turcotte M; Mathkour H
    J Bioinform Comput Biol; 2014 Oct; 12(5):1450027. PubMed ID: 25362841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient sequential and parallel algorithms for finding edit distance based motifs.
    Pal S; Xiao P; Rajasekaran S
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):465. PubMed ID: 27557423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding unusual medical time-series subsequences: algorithms and applications.
    Keogh E; Lin J; Fu AW; Van Herle H
    IEEE Trans Inf Technol Biomed; 2006 Jul; 10(3):429-39. PubMed ID: 16871709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new algorithm for DNA motif discovery using multiple sample sequence sets.
    Yu Q; Zhao X; Huo H
    J Bioinform Comput Biol; 2019 Aug; 17(4):1950021. PubMed ID: 31617465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregated Indexing of Biomedical Time Series Data.
    Woodbridge J; Mortazavi B; Sarrafzadeh M; Bui AA
    Proc IEEE Int Conf Healthc Inform Imaging Syst Biol; 2012 Sep; 2012():23-30. PubMed ID: 27617298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iGibbs: improving Gibbs motif sampler for proteins by sequence clustering and iterative pattern sampling.
    Kim S; Wang Z; Dalkilic M
    Proteins; 2007 Feb; 66(3):671-81. PubMed ID: 17120229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NSAMD: A new approach to discover structured contiguous substrings in sequence datasets using Next-Symbol-Array.
    Pari A; Baraani A; Parseh S
    Comput Biol Chem; 2016 Oct; 64():384-395. PubMed ID: 27620380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TrieAMD: a scalable and efficient apriori motif discovery approach.
    Al-Turaiki I; Badr G; Mathkour H
    Int J Data Min Bioinform; 2015; 13(1):13-30. PubMed ID: 26529905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alignment-free clustering of transcription factor binding motifs using a genetic-k-medoids approach.
    Broin PÓ; Smith TJ; Golden AA
    BMC Bioinformatics; 2015 Jan; 16():22. PubMed ID: 25627106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cluster refinement algorithm for motif discovery.
    Li G; Chan TM; Leung KS; Lee KH
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):654-68. PubMed ID: 21030733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deterministic motif finding algorithm with application to the human genome.
    Hon LS; Jain AN
    Bioinformatics; 2006 May; 22(9):1047-54. PubMed ID: 16455748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repulsive parallel MCMC algorithm for discovering diverse motifs from large sequence sets.
    Ikebata H; Yoshida R
    Bioinformatics; 2015 May; 31(10):1561-8. PubMed ID: 25583120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-objective imperialist competitive algorithm (MOICA) for finding motifs in DNA sequences.
    Gohardani SA; Bagherian M; Vaziri H
    Math Biosci Eng; 2019 Feb; 16(3):1575-1596. PubMed ID: 30947433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Efficient Algorithm for Discovering Motifs in Large DNA Data Sets.
    Yu Q; Huo H; Chen X; Guo H; Vitter JS; Huan J
    IEEE Trans Nanobioscience; 2015 Jul; 14(5):535-44. PubMed ID: 25872217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finding motifs with insufficient number of strong binding sites.
    Leung HC; Chin FY; Yiu SM; Rosenfeld R; Tsang WW
    J Comput Biol; 2005; 12(6):686-701. PubMed ID: 16108711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.