These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32153381)

  • 21. Adaptive Navigation Algorithm with Deep Learning for Autonomous Underwater Vehicle.
    Ma H; Mu X; He B
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Probabilistic and Highly Efficient Topology Control Algorithm for Underwater Cooperating AUV Networks.
    Li N; Cürüklü B; Bastos J; Sucasas V; Fernandez JAS; Rodriguez J
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28471387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Observability analysis of DVL/PS aided INS for a maneuvering AUV.
    Klein I; Diamant R
    Sensors (Basel); 2015 Oct; 15(10):26818-37. PubMed ID: 26506356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time to stop mucking around? Impacts of underwater photography on cryptobenthic fauna found in soft sediment habitats.
    De Brauwer M; Saunders BJ; Ambo-Rappe R; Jompa J; McIlwain JL; Harvey ES
    J Environ Manage; 2018 Jul; 218():14-22. PubMed ID: 29660542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Underwater Impact and Intention-Behaviour Gap of Scuba Divers on Coral Communities in Hong Kong SAR, China.
    So JY; Kwok Y; Lai C; Fong HW; Pang LY
    Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36900906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonlinear Attitude Control of a Spherical Underwater Vehicle.
    Fernandez RAS; R EAP; Milosevic Z; Dominguez S; Rossi C
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30909650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-Time Pipe and Valve Characterisation and Mapping for Autonomous Underwater Intervention Tasks.
    Martin-Abadal M; Oliver-Codina G; Gonzalez-Cid Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365839
    [TBL] [Abstract][Full Text] [Related]  

  • 28. End-to-End AUV Motion Planning Method Based on Soft Actor-Critic.
    Yu X; Sun Y; Wang X; Zhang G
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-Dimensional Frontier-Based Viewpoint Generation for Exploring and Mapping Underwater Environments.
    Vidal E; Palomeras N; Istenič K; Hernández JD; Carreras M
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30934639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design, Modeling, and Visual Learning-Based Control of Soft Robotic Fish Driven by Super-Coiled Polymers.
    Rajendran SK; Zhang F
    Front Robot AI; 2021; 8():809427. PubMed ID: 35309723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic surface fault tolerant control for underwater remotely operated vehicles.
    Baldini A; Ciabattoni L; Felicetti R; Ferracuti F; Freddi A; Monteriù A
    ISA Trans; 2018 Jul; 78():10-20. PubMed ID: 29503009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Attitude Stabilization Control of Autonomous Underwater Vehicle Based on Decoupling Algorithm and PSO-ADRC.
    Wu X; Jiang D; Yun J; Liu X; Sun Y; Tao B; Tong X; Xu M; Kong J; Liu Y; Zhao G; Fang Z
    Front Bioeng Biotechnol; 2022; 10():843020. PubMed ID: 35295652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advantages of aquatic animals as models for bio-inspired drones over present AUV technology.
    Fish FE
    Bioinspir Biomim; 2020 Feb; 15(2):025001. PubMed ID: 31751980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Underwater terrain-aided navigation system based on combination matching algorithm.
    Li P; Sheng G; Zhang X; Wu J; Xu B; Liu X; Zhang Y
    ISA Trans; 2018 Jul; 78():80-87. PubMed ID: 29548680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite-Time Controller for Coordinated Navigation of Unmanned Underwater Vehicles in a Collaborative Manipulation Task.
    González-García J; Narcizo-Nuci NA; Gómez-Espinosa A; García-Valdovinos LG; Salgado-Jiménez T
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Reinforcement Learning Controller for 3D Path Following and Collision Avoidance by Autonomous Underwater Vehicles.
    Havenstrøm ST; Rasheed A; San O
    Front Robot AI; 2020; 7():566037. PubMed ID: 33585570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Path Following, Obstacle Detection and Obstacle Avoidance for Thrusted Underwater Snake Robots.
    Kelasidi E; Moe S; Pettersen KY; Kohl AM; Liljebäck P; Gravdahl JT
    Front Robot AI; 2019; 6():57. PubMed ID: 33501072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cooperative path planning of multiple autonomous underwater vehicles operating in dynamic ocean environment.
    Zhuang Y; Huang H; Sharma S; Xu D; Zhang Q
    ISA Trans; 2019 Nov; 94():174-186. PubMed ID: 31047643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Research on a hybrid neural network task assignment algorithm for solving multi-constraint heterogeneous autonomous underwater robot swarms.
    Ru J; Hao D; Zhang X; Xu H; Jia Z
    Front Neurorobot; 2022; 16():1055056. PubMed ID: 36704716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Embedded Spherical Localization for Micro Underwater Vehicles Based on Attenuation of Electro-Magnetic Carrier Signals.
    Duecker DA; Geist AR; Hengeler M; Kreuzer E; Pick MA; Rausch V; Solowjow E
    Sensors (Basel); 2017 Apr; 17(5):. PubMed ID: 28445419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.