BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 32153490)

  • 1. Improvement After Vestibular Rehabilitation Not Explained by Improved Passive VOR Gain.
    Millar JL; Gimmon Y; Roberts D; Schubert MC
    Front Neurol; 2020; 11():79. PubMed ID: 32153490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence a shared mechanism mediates ipsi- and contralesional compensatory saccades and gait after unilateral vestibular deafferentation.
    Wagner AR; Schubert MC
    J Neurophysiol; 2020 Apr; 123(4):1486-1495. PubMed ID: 32159427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional vector analysis of the human vestibuloocular reflex in response to high-acceleration head rotations. II. responses in subjects with unilateral vestibular loss and selective semicircular canal occlusion.
    Aw ST; Halmagyi GM; Haslwanter T; Curthoys IS; Yavor RA; Todd MJ
    J Neurophysiol; 1996 Dec; 76(6):4021-30. PubMed ID: 8985897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rehabilitation of dynamic visual acuity in patients with unilateral vestibular hypofunction: earlier is better.
    Michel L; Laurent T; Alain T
    Eur Arch Otorhinolaryngol; 2020 Jan; 277(1):103-113. PubMed ID: 31637477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal dynamics of semicircular canal and otolith function following acute unilateral vestibular deafferentation in humans.
    Tian JR; Ishiyama A; Demer JL
    Exp Brain Res; 2007 Apr; 178(4):529-41. PubMed ID: 17091290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two conditions to fully recover dynamic canal function in unilateral peripheral vestibular hypofunction patients.
    Lacour M; Thiry A; Tardivet L
    J Vestib Res; 2021; 31(5):407-421. PubMed ID: 33749626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The under-compensatory roll aVOR does not affect dynamic visual acuity.
    Schubert MC; Migliaccio AA; Ng TW; Shaikh AG; Zee DS
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):517-25. PubMed ID: 22526736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensatory saccades in head impulse testing influence the dynamic visual acuity of patients with unilateral peripheral vestibulopathy1.
    Wettstein VG; Weber KP; Bockisch CJ; Hegemann SC
    J Vestib Res; 2016 Nov; 26(4):395-402. PubMed ID: 27814315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of dynamic visual acuity recovery with vestibular rehabilitation.
    Schubert MC; Migliaccio AA; Clendaniel RA; Allak A; Carey JP
    Arch Phys Med Rehabil; 2008 Mar; 89(3):500-7. PubMed ID: 18295629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early adaptation and compensation of clinical vestibular responses after unilateral vestibular deafferentation surgery.
    Mantokoudis G; Schubert MC; Tehrani AS; Wong AL; Agrawal Y
    Otol Neurotol; 2014 Jan; 35(1):148-54. PubMed ID: 23965525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergence Vestibulo-ocular Reflex in Unilateral Vestibular Hypofunction: Behavioral Evidence in Support of a Novel Gaze Stability Exercise.
    Chang TP; Schubert MC
    J Neurol Phys Ther; 2021 Jan; 45(1):3-11. PubMed ID: 33065632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vestibulo-Ocular Responses and Dynamic Visual Acuity During Horizontal Rotation and Translation.
    Ramaioli C; Cuturi LF; Ramat S; Lehnen N; MacNeilage PR
    Front Neurol; 2019; 10():321. PubMed ID: 31024422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute VOR gain differences for outward vs. inward head impulses.
    Schubert MC; Mantokoudis G; Xie L; Agrawal Y
    J Vestib Res; 2014; 24(5-6):397-402. PubMed ID: 25564082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Head impulse test in unilateral vestibular loss: vestibulo-ocular reflex and catch-up saccades.
    Weber KP; Aw ST; Todd MJ; McGarvie LA; Curthoys IS; Halmagyi GM
    Neurology; 2008 Feb; 70(6):454-63. PubMed ID: 18250290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compensatory saccades differ between those with vestibular hypofunction and multiple sclerosis pointing to unique roles for peripheral and central vestibular inputs.
    Wagner AR; Grove CR; Loyd BJ; Dibble LE; Schubert MC
    J Neurophysiol; 2022 Oct; 128(4):934-945. PubMed ID: 36069428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exergaming With Integrated Head Turn Tasks Improves Compensatory Saccade Pattern in Some Patients With Chronic Peripheral Unilateral Vestibular Hypofunction.
    Swanenburg J; Büchi F; Straumann D; Weber KP; de Bruin ED
    Front Neurol; 2020; 11():601. PubMed ID: 32714269
    [No Abstract]   [Full Text] [Related]  

  • 17. Functional Head Impulse Testing Might Be Useful for Assessing Vestibular Compensation After Unilateral Vestibular Loss.
    Sjögren J; Fransson PA; Karlberg M; Magnusson M; Tjernström F
    Front Neurol; 2018; 9():979. PubMed ID: 30510538
    [No Abstract]   [Full Text] [Related]  

  • 18. Oculomotor strategies and their effect on reducing gaze position error.
    Schubert MC; Hall CD; Das V; Tusa RJ; Herdman SJ
    Otol Neurotol; 2010 Feb; 31(2):228-31. PubMed ID: 19887975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Once-Daily Incremental Vestibular-Ocular Reflex Adaptation Training in Patients With Chronic Peripheral Vestibular Hypofunction: A 1-Week Randomized Controlled Study.
    Rinaudo CN; Schubert MC; Cremer PD; Figtree WVC; Todd CJ; Migliaccio AA
    J Neurol Phys Ther; 2021 Apr; 45(2):87-100. PubMed ID: 33675600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human vestibulo-ocular reflex and compensatory saccades in schwannoma patients before and after vestibular nerve section.
    Pogson JM; Taylor RL; Bradshaw AP; McGarvie L; D'Souza M; Flanagan S; Kong J; Biggs N; Shivalingam B; Greenberg S; Croxson G; Halmagyi GM; Welgampola MS
    Clin Neurophysiol; 2022 Jun; 138():197-213. PubMed ID: 35370080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.