These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 32154069)
1. Nanocarbon Catalysts: Recent Understanding Regarding the Active Sites. Zhang LH; Shi Y; Wang Y; Shiju NR Adv Sci (Weinh); 2020 Mar; 7(5):1902126. PubMed ID: 32154069 [TBL] [Abstract][Full Text] [Related]
2. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods. Qi W; Yan P; Su DS Acc Chem Res; 2018 Mar; 51(3):640-648. PubMed ID: 29446621 [TBL] [Abstract][Full Text] [Related]
3. Identification of active sites of B/N co-doped nanocarbons in selective oxidation of benzyl alcohol. Li S; Zhang X; Huang X; Wu S; Xie Z J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2801-2808. PubMed ID: 34785046 [TBL] [Abstract][Full Text] [Related]
4. Metal-Free Carbocatalysis in Advanced Oxidation Reactions. Duan X; Sun H; Wang S Acc Chem Res; 2018 Mar; 51(3):678-687. PubMed ID: 29494126 [TBL] [Abstract][Full Text] [Related]
5. Nanocarbon-based catalysts for selective nitroaromatic hydrogenation: A mini review. Yao J; Wang L; Xie D; Jiang L; Li J; Fang X Front Chem; 2022; 10():1000680. PubMed ID: 36157045 [TBL] [Abstract][Full Text] [Related]
7. Catalysis by hybrid sp Lin Y; Sun X; Su DS; Centi G; Perathoner S Chem Soc Rev; 2018 Nov; 47(22):8438-8473. PubMed ID: 30371710 [TBL] [Abstract][Full Text] [Related]
8. An ultrafast and facile nondestructive strategy to convert various inefficient commercial nanocarbons to highly active Fenton-like catalysts. Wang J; Fu Q; Yu J; Yang H; Hao Z; Zhu F; Ouyang G Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35017300 [TBL] [Abstract][Full Text] [Related]
10. Heteroatom-Doped Carbon Nanotube and Graphene-Based Electrocatalysts for Oxygen Reduction Reaction. Li JC; Hou PX; Liu C Small; 2017 Dec; 13(45):. PubMed ID: 28961364 [TBL] [Abstract][Full Text] [Related]
11. Nanocarbons for Catalytic Desulfurization. Gu Q; Lin Y; Heumann S; Su D Chem Asian J; 2017 Nov; 12(22):2876-2883. PubMed ID: 28837759 [TBL] [Abstract][Full Text] [Related]
12. Oxidative Dehydrogenation on Nanocarbon: Intrinsic Catalytic Activity and Structure-Function Relationships. Qi W; Liu W; Guo X; Schlögl R; Su D Angew Chem Int Ed Engl; 2015 Nov; 54(46):13682-5. PubMed ID: 26388451 [TBL] [Abstract][Full Text] [Related]
13. Defect and Doping Co-Engineered Non-Metal Nanocarbon ORR Electrocatalyst. Zhang J; Zhang J; He F; Chen Y; Zhu J; Wang D; Mu S; Yang HY Nanomicro Lett; 2021 Feb; 13(1):65. PubMed ID: 34138232 [TBL] [Abstract][Full Text] [Related]
14. 3D Heteroatom-Doped Carbon Nanomaterials as Multifunctional Metal-Free Catalysts for Integrated Energy Devices. Paul R; Du F; Dai L; Ding Y; Wang ZL; Wei F; Roy A Adv Mater; 2019 Mar; 31(13):e1805598. PubMed ID: 30761622 [TBL] [Abstract][Full Text] [Related]
15. Porous Silicon Carbide (SiC): A Chance for Improving Catalysts or Just Another Active-Phase Carrier? Tuci G; Liu Y; Rossin A; Guo X; Pham C; Giambastiani G; Pham-Huu C Chem Rev; 2021 Sep; 121(17):10559-10665. PubMed ID: 34255488 [TBL] [Abstract][Full Text] [Related]
16. Folic Acid-Derived Low-dimensional carbons for efficient oxidative dehydrogenation of ethylbenzene. Hou Y; Xia M; Han Y; Zhang X; Lu Y; Yang QH; Xie Z J Colloid Interface Sci; 2023 May; 638():291-299. PubMed ID: 36739747 [TBL] [Abstract][Full Text] [Related]
17. Improving the Catalytic Activity of Carbon-Supported Single Atom Catalysts by Polynary Metal or Heteroatom Doping. Fan M; Cui J; Wu J; Vajtai R; Sun D; Ajayan PM Small; 2020 Jun; 16(22):e1906782. PubMed ID: 32363806 [TBL] [Abstract][Full Text] [Related]
18. Catalysis Synergism by Atomically Precise Bimetallic Nanoclusters Doped with Heteroatoms. Liu X; Cai X; Zhu Y Acc Chem Res; 2023 Jun; 56(12):1528-1538. PubMed ID: 37249232 [TBL] [Abstract][Full Text] [Related]
19. Plastering Sponge with Nanocarbon-Containing Slurry to Construct Mechanically Robust Macroporous Monolithic Catalysts for Direct Dehydrogenation of Ethylbenzene. Wei X; Ge G; Yu W; Guo H; Guo X; Song C; Zhao Z ACS Appl Mater Interfaces; 2022 May; 14(17):19315-19323. PubMed ID: 35437981 [TBL] [Abstract][Full Text] [Related]