These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32154125)

  • 1. Estimating virtual water and land use transfers associated with future food supply: A scalable food balance approach.
    Yawson DO
    MethodsX; 2020; 7():100811. PubMed ID: 32154125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual water flows under projected climate, land use and population change: the case of UK feed barley and meat.
    Yawson DO; Mohan S; Armah FA; Ball T; Mulholland B; Adu MO; White PJ
    Heliyon; 2020 Jan; 6(1):e03127. PubMed ID: 32042940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of climate change and mitigation policies on malt barley supplies and associated virtual water flows in the UK.
    Yawson DO; Adu MO; Armah FA
    Sci Rep; 2020 Jan; 10(1):376. PubMed ID: 31941955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water security, global change and land-atmosphere feedbacks.
    Dadson S; Acreman M; Harding R
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2002):20120412. PubMed ID: 24080621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Balancing virtual land imports by a shift in the diet. Using a land balance approach to assess the sustainability of food consumption. Germany as an example.
    Meier T; Christen O; Semler E; Jahreis G; Voget-Kleschin L; Schrode A; Artmann M
    Appetite; 2014 Mar; 74():20-34. PubMed ID: 24269506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual water transfers in Africa: Assessing topical condition of water scarcity, water savings, and policy implications.
    Hirwa H; Peng Y; Zhang Q; Qiao Y; Leng P; Tian C; Yang G; Muhirwa F; Diop S; Kayiranga A; Li F; Chen G
    Sci Total Environ; 2022 Aug; 835():155343. PubMed ID: 35489483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual water trade and world water resources.
    Oki T; Kanae S
    Water Sci Technol; 2004; 49(7):203-9. PubMed ID: 15195440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uneven development within China: Implications for interprovincial energy, water and arable land requirements.
    Zhang B; Wang Q; Liu Y; Zhang Y; Wu X; Sun X; Qiao H
    J Environ Manage; 2020 May; 261():110231. PubMed ID: 32148301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trading water: virtual water flows through interstate cereal trade in India.
    Harris F; Dalin C; Cuevas S; Lakshmikantha NR; Adhya T; Joy EJM; Scheelbeek PFD; Kayatz B; Nicholas O; Shankar B; Dangour AD; Green R
    Environ Res Lett; 2020 Dec; 15(12):. PubMed ID: 33850516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Land-Water-Food Nexus and indications of crop adjustment for water shortage solution.
    Ren D; Yang Y; Yang Y; Richards K; Zhou X
    Sci Total Environ; 2018 Jun; 626():11-21. PubMed ID: 29331834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal patterns of the trade-off and synergy relationship among ecosystem services in Poyang Lake Region, China.
    Ran FW; Luo ZJ; Wu JP; Qi S; Cao LP; Cai ZM; Chen YY
    Ying Yong Sheng Tai Xue Bao; 2019 Mar; 30(3):995-1004. PubMed ID: 30912393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential influence of climate and anthropogenic variables on water security using blue and green water scarcity, Falkenmark index, and freshwater provision indicator.
    Veettil AV; Mishra AK
    J Environ Manage; 2018 Dec; 228():346-362. PubMed ID: 30241040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifting from volume to economic value in virtual water allocation problems: A proposed new framework and methodology.
    Lowe BH; Oglethorpe DR; Choudhary S
    J Environ Manage; 2020 Dec; 275():110239. PubMed ID: 33059842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growing water scarcity in agriculture: future challenge to global water security.
    Falkenmark M
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2002):20120410. PubMed ID: 24080619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A virtual water analysis for agricultural production and food security].
    Ke B; Liu WH; Duan GM; Yan Y; Deng HB; Zhao JZ
    Huan Jing Ke Xue; 2004 Mar; 25(2):32-6. PubMed ID: 15202230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agent-based modelling of water balance in a social-ecological system: A multidisciplinary approach for mountain catchments.
    Huber L; Rüdisser J; Meisch C; Stotten R; Leitinger G; Tappeiner U
    Sci Total Environ; 2021 Feb; 755(Pt 1):142962. PubMed ID: 33348483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global Expanded Nutrient Supply (GENuS) Model: A New Method for Estimating the Global Dietary Supply of Nutrients.
    Smith MR; Micha R; Golden CD; Mozaffarian D; Myers SS
    PLoS One; 2016; 11(1):e0146976. PubMed ID: 26807571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape.
    Qiu J; Carpenter SR; Booth EG; Motew M; Zipper SC; Kucharik CJ; Chen X; Loheide SP; Seifert J; Turner MG
    Ecol Appl; 2018 Jan; 28(1):119-134. PubMed ID: 28944518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual water flows and trade liberalization.
    Ramirez-Vallejo J; Rogers P
    Water Sci Technol; 2004; 49(7):25-32. PubMed ID: 15195413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explaining virtual water trade: A spatial-temporal analysis of the comparative advantage of land, labor and water in China.
    Zhao D; Hubacek K; Feng K; Sun L; Liu J
    Water Res; 2019 Apr; 153():304-314. PubMed ID: 30738227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.