BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32154214)

  • 1. First-Principle Insights Into Molecular Design for High-Voltage Organic Electrode Materials for Mg Based Batteries.
    Lüder J; Manzhos S
    Front Chem; 2020; 8():83. PubMed ID: 32154214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes?
    Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I
    Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triphenylamine-Based Metal-Organic Frameworks as Cathode Materials in Lithium-Ion Batteries with Coexistence of Redox Active Sites, High Working Voltage, and High Rate Stability.
    Peng Z; Yi X; Liu Z; Shang J; Wang D
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14578-85. PubMed ID: 27225327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic Positive Materials for Magnesium Batteries: A Review.
    Tran NA; Do Van Thanh N; Le MLP
    Chemistry; 2021 Jun; 27(36):9198-9217. PubMed ID: 33792101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity.
    Nokami T; Matsuo T; Inatomi Y; Hojo N; Tsukagoshi T; Yoshizawa H; Shimizu A; Kuramoto H; Komae K; Tsuyama H; Yoshida J
    J Am Chem Soc; 2012 Dec; 134(48):19694-700. PubMed ID: 23130634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregate-State Effects in the Atomistic Modeling of Organic Materials for Electrochemical Energy Conversion and Storage Devices: A Perspective.
    Manzhos S
    Molecules; 2020 May; 25(9):. PubMed ID: 32397438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vanadium-Based Materials: Next Generation Electrodes Powering the Battery Revolution?
    Zhang S; Tan H; Rui X; Yu Y
    Acc Chem Res; 2020 Aug; 53(8):1660-1671. PubMed ID: 32709195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Design of Phenanthrenequinone Derivatives as Organic Cathode Materials.
    Zhao LB; Gao ST; He R; Shen W; Li M
    ChemSusChem; 2018 Apr; 11(7):1215-1222. PubMed ID: 29380541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Electropolymerization Enables Ultrafast Long Cycle Life and High-Voltage Organic Cathodes for Lithium Batteries.
    Zhao C; Chen Z; Wang W; Xiong P; Li B; Li M; Yang J; Xu Y
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):11992-11998. PubMed ID: 32266770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the Electrochemical Properties of Organic Battery Cathode Materials: Insights from Evolutionary Algorithm DFT Calculations.
    Carvalho RP; Marchiori CFN; Brandell D; Araujo CM
    ChemSusChem; 2020 May; 13(9):2402-2409. PubMed ID: 32061037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties.
    Islam MS; Fisher CA
    Chem Soc Rev; 2014 Jan; 43(1):185-204. PubMed ID: 24202440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxocarbon-functionalized graphene as a lithium-ion battery cathode: a first-principles investigation.
    Wang Z; Li S; Zhang Y; Xu H
    Phys Chem Chem Phys; 2018 Mar; 20(11):7447-7456. PubMed ID: 29488988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic Cathode with Dual-Type Multielectron Reaction Centers for High-Energy-Density Lithium Primary Batteries.
    Xun H; Chen Z; Liu Y; Su H; Yang J; Liu Y; Xu Y
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29064-29071. PubMed ID: 37293868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ-Formed Hierarchical Metal-Organic Flexible Cathode for High-Energy Sodium-Ion Batteries.
    Huang Y; Fang C; Zeng R; Liu Y; Zhang W; Wang Y; Liu Q; Huang Y
    ChemSusChem; 2017 Dec; 10(23):4704-4708. PubMed ID: 28891155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.