BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32154416)

  • 21. Preliminary Phytochemical screening and antimicrobial studies on Artocarpus lakoocha Roxb.
    Pandey A; Bhatnagar SP
    Anc Sci Life; 2009 Apr; 28(4):21-4. PubMed ID: 22557328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flavonoid and stilbenoid production in callus cultures of Artocarpus lakoocha.
    Maneechai S; De-Eknamkul W; Umehara K; Noguchi H; Likhitwitayawuid K
    Phytochemistry; 2012 Sep; 81():42-9. PubMed ID: 22769436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment.
    Sabiu S; O'Neill FH; Ashafa AOT
    J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of inhibitory activities and mechanisms of five mulberry plant bioactive components against α-glucosidase.
    He H; Lu YH
    J Agric Food Chem; 2013 Aug; 61(34):8110-9. PubMed ID: 23909841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean.
    McCue P; Kwon YI; Shetty K
    Asia Pac J Clin Nutr; 2005; 14(2):145-52. PubMed ID: 15927931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scopoletin inhibits α-glucosidase in vitro and alleviates postprandial hyperglycemia in mice with diabetes.
    Jang JH; Park JE; Han JS
    Eur J Pharmacol; 2018 Sep; 834():152-156. PubMed ID: 30031794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Helichrysum and grapefruit extracts inhibit carbohydrate digestion and absorption, improving postprandial glucose levels and hyperinsulinemia in rats.
    de la Garza AL; Etxeberria U; Lostao MP; San Román B; Barrenetxe J; Martínez JA; Milagro FI
    J Agric Food Chem; 2013 Dec; 61(49):12012-9. PubMed ID: 24261475
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling of cooked starch digestion process using recombinant human pancreatic α-amylase and maltase-glucoamylase for in vitro evaluation of α-glucosidase inhibitors.
    Cao X; Zhang C; Dong Y; Geng P; Bai F; Bai G
    Carbohydr Res; 2015 Sep; 414():15-21. PubMed ID: 26162745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of α-glucosidase by new prenylated flavonoids from euphorbia hirta L. herb.
    Sheliya MA; Rayhana B; Ali A; Pillai KK; Aeri V; Sharma M; Mir SR
    J Ethnopharmacol; 2015 Dec; 176():1-8. PubMed ID: 26477374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effectiveness of Artocarpus lakoocha extract, poloxamer 407, on Enterococcus faecalis in vitro.
    Teanpaisan R; Ruangkiatkul P; Thammasitboon K; Puripattanavong J; Faroongsarng D
    J Investig Clin Dent; 2013 Nov; 4(4):219-24. PubMed ID: 23857911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of two alpha-glucosidase inhibitors, voglibose and acarbose, on postprandial hyperglycemia correlates with subjective abdominal symptoms.
    Fujisawa T; Ikegami H; Inoue K; Kawabata Y; Ogihara T
    Metabolism; 2005 Mar; 54(3):387-90. PubMed ID: 15736118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Berberine acutely inhibits the digestion of maltose in the intestine.
    Li ZQ; Zuo DY; Qie XD; Qi H; Zhao MQ; Wu YL
    J Ethnopharmacol; 2012 Jul; 142(2):474-80. PubMed ID: 22626925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of anthoxanthins and their actions on digestive enzyme inhibition when used independently and in combination.
    Koh YQ; Sin YAD; Rong HJ; Chua THS; Ho SS; Ho HK
    Heliyon; 2022 Aug; 8(8):e10131. PubMed ID: 35991985
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    Choi SI; Park MH; Han JS
    Prev Nutr Food Sci; 2016 Sep; 21(3):181-186. PubMed ID: 27752493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flavonoids and its derivatives from Callistephus chinensis flowers and their inhibitory activities against alpha-glucosidase.
    Zhang X; Liu Z; Bi X; Liu J; Li W; Zhao Y
    EXCLI J; 2013; 12():956-66. PubMed ID: 27298611
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Gupta AK; Rather MA; Kumar Jha A; Shashank A; Singhal S; Sharma M; Pathak U; Sharma D; Mastinu A
    Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33050190
    [No Abstract]   [Full Text] [Related]  

  • 37. Chickpea (Cicer arietinum L.) Lectin Exhibit Inhibition of ACE-I, α-amylase and α-glucosidase Activity.
    Bhagyawant SS; Narvekar DT; Gupta N; Bhadkaria A; Gautam AK; Srivastava N
    Protein Pept Lett; 2019; 26(7):494-501. PubMed ID: 30919768
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Chipiti T; Ibrahim MA; Singh M; Islam MS
    Pharmacogn Mag; 2017 Jul; 13(Suppl 2):S329-S333. PubMed ID: 28808401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effective Control of Postprandial Glucose Level through Inhibition of Intestinal Alpha Glucosidase by Cymbopogon martinii (Roxb.).
    Ghadyale V; Takalikar S; Haldavnekar V; Arvindekar A
    Evid Based Complement Alternat Med; 2012; 2012():372909. PubMed ID: 21792369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Daidzein inhibits carbohydrate digestive enzymes in vitro and alleviates postprandial hyperglycemia in diabetic mice.
    Park MH; Ju JW; Park MJ; Han JS
    Eur J Pharmacol; 2013 Jul; 712(1-3):48-52. PubMed ID: 23669248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.