BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32154625)

  • 1. Insights into Cobalta(III/IV/II)-Electrocatalysis: Oxidation-Induced Reductive Elimination for Twofold C-H Activation.
    Meyer TH; Oliveira JCA; Ghorai D; Ackermann L
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):10955-10960. PubMed ID: 32154625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metalla-electrocatalyzed C-H Activation by Earth-Abundant 3d Metals and Beyond.
    Ackermann L
    Acc Chem Res; 2020 Jan; 53(1):84-104. PubMed ID: 31854967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cobaltaelectro-catalyzed C-H activation for resource-economical molecular syntheses.
    Tian C; Meyer TH; Stangier M; Dhawa U; Rauch K; Finger LH; Ackermann L
    Nat Protoc; 2020 May; 15(5):1760-1774. PubMed ID: 32296151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroremovable Traceless Hydrazides for Cobalt-Catalyzed Electro-Oxidative C-H/N-H Activation with Internal Alkynes.
    Mei R; Sauermann N; Oliveira JCA; Ackermann L
    J Am Chem Soc; 2018 Jun; 140(25):7913-7921. PubMed ID: 29812927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-Electrocatalyzed C-H Arylations: Mechanistic Insights into Oxidation-Induced Reductive Elimination for Ferraelectrocatalysis.
    Zhu C; Stangier M; Oliveira JCA; Massignan L; Ackermann L
    Chemistry; 2019 Dec; 25(71):16382-16389. PubMed ID: 31658385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt catalysis involving π components in organic synthesis.
    Gandeepan P; Cheng CH
    Acc Chem Res; 2015 Apr; 48(4):1194-206. PubMed ID: 25854540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical C-H Amination by Cobalt Catalysis in a Renewable Solvent.
    Sauermann N; Mei R; Ackermann L
    Angew Chem Int Ed Engl; 2018 Apr; 57(18):5090-5094. PubMed ID: 29509336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redefining the Mechanistic Scenario of Carbon-Sulfur Nucleophilic Coupling via High-Valent Cp*Co
    López-Resano S; Martínez de Salinas S; Garcés-Pineda FA; Moneo-Corcuera A; Galán-Mascarós JR; Maseras F; Pérez-Temprano MH
    Angew Chem Int Ed Engl; 2021 May; 60(20):11217-11221. PubMed ID: 33739577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct functionalization of M-C (M = Pt(II), Pd(II)) bonds using environmentally benign oxidants, O2 and H2O2.
    Vedernikov AN
    Acc Chem Res; 2012 Jun; 45(6):803-13. PubMed ID: 22087633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidatively Induced Reductive Elimination: Exploring the Scope and Catalyst Systems with Ir, Rh, and Ru Complexes.
    Kim J; Shin K; Jin S; Kim D; Chang S
    J Am Chem Soc; 2019 Mar; 141(9):4137-4146. PubMed ID: 30762365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimetallic redox synergy in oxidative palladium catalysis.
    Powers DC; Ritter T
    Acc Chem Res; 2012 Jun; 45(6):840-50. PubMed ID: 22029861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cobalt-Catalyzed C(sp(2))-H Borylation: Mechanistic Insights Inspire Catalyst Design.
    Obligacion JV; Semproni SP; Pappas I; Chirik PJ
    J Am Chem Soc; 2016 Aug; 138(33):10645-53. PubMed ID: 27476954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palladium(II)-Catalyzed Oxidative Difunctionalization of Alkenes: Bond Forming at a High-Valent Palladium Center.
    Yin G; Mu X; Liu G
    Acc Chem Res; 2016 Nov; 49(11):2413-2423. PubMed ID: 27739689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into Ruthenium(II/IV)-Catalyzed Distal C-H Oxygenation by Weak Coordination.
    Bu Q; Kuniyil R; Shen Z; Gońka E; Ackermann L
    Chemistry; 2020 Dec; 26(69):16450-16454. PubMed ID: 32596872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Stable Diarylpalladium(II) Complexes: Detailed Study of the Aryl-Aryl Bond-Forming Reductive Elimination.
    Gensch T; Richter N; Theumer G; Kataeva O; Knölker HJ
    Chemistry; 2016 Aug; 22(32):11186-90. PubMed ID: 27309346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobaltaelectro-Catalyzed C-H Activation for Central and Axial Double Enantio-Induction.
    von Münchow T; Liu YR; Parmar R; Peters SE; Trienes S; Ackermann L
    Angew Chem Int Ed Engl; 2024 May; ():e202405423. PubMed ID: 38758011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalta-Electrocatalyzed C-H Activation in Biomass-Derived Glycerol: Powered by Renewable Wind and Solar Energy.
    Meyer TH; Chesnokov GA; Ackermann L
    ChemSusChem; 2020 Feb; 13(4):668-671. PubMed ID: 31917522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactions of late transition metal complexes with molecular oxygen.
    Boisvert L; Goldberg KI
    Acc Chem Res; 2012 Jun; 45(6):899-910. PubMed ID: 22578038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capturing Elusive Cobaltacycle Intermediates: A Real-Time Snapshot of the Cp*Co
    Sanjosé-Orduna J; Gallego D; Garcia-Roca A; Martin E; Benet-Buchholz J; Pérez-Temprano MH
    Angew Chem Int Ed Engl; 2017 Sep; 56(40):12137-12141. PubMed ID: 28586128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation.
    Qi X; Li Y; Bai R; Lan Y
    Acc Chem Res; 2017 Nov; 50(11):2799-2808. PubMed ID: 29112396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.