BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32154895)

  • 1. Roles of GPRC5 family proteins: focusing on GPRC5B and lipid-mediated signalling.
    Hirabayashi Y; Kim YJ
    J Biochem; 2020 Jun; 167(6):541-547. PubMed ID: 32154895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative characterization of GPRC5B and GPRC5CLacZ knockin mice; behavioral abnormalities in GPRC5B-deficient mice.
    Sano T; Kim YJ; Oshima E; Shimizu C; Kiyonari H; Abe T; Higashi H; Yamada K; Hirabayashi Y
    Biochem Biophys Res Commun; 2011 Sep; 412(3):460-5. PubMed ID: 21840300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GPRC5B activates obesity-associated inflammatory signaling in adipocytes.
    Kim YJ; Sano T; Nabetani T; Asano Y; Hirabayashi Y
    Sci Signal; 2012 Nov; 5(251):ra85. PubMed ID: 23169819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Signalling Pathways Regulated by GPRC5B in β-Cells by CRISPR-Cas9-Mediated Genome Editing.
    Atanes P; Ruz-Maldonado I; Hawkes R; Liu B; Persaud SJ; Amisten S
    Cell Physiol Biochem; 2018; 45(2):656-666. PubMed ID: 29408822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orphan G-Protein Coupled Receptor GPRC5B Is Critical for Lymphatic Development.
    Xu W; Nelson-Maney NP; Bálint L; Kwon HB; Davis RB; Dy DCM; Dunleavey JM; St Croix B; Caron KM
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPRC5B-Mediated Sphingomyelin Synthase 2 Phosphorylation Plays a Critical Role in Insulin Resistance.
    Kim YJ; Greimel P; Hirabayashi Y
    iScience; 2018 Oct; 8():250-266. PubMed ID: 30343189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caveolin-1 prevents palmitate-induced NF-κB signaling by inhibiting GPRC5B-phosphorylation.
    Kim YJ; Hirabayashi Y
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2673-2677. PubMed ID: 30086884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GPRC5b Modulates Inflammatory Response in Glomerular Diseases
    Zambrano S; Möller-Hackbarth K; Li X; Rodriguez PQ; Charrin E; Schwarz A; Nyström J; Wernerson AÖ; Lal M; Patrakka J
    J Am Soc Nephrol; 2019 Sep; 30(9):1573-1586. PubMed ID: 31285284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance.
    Holland WL; Brozinick JT; Wang LP; Hawkins ED; Sargent KM; Liu Y; Narra K; Hoehn KL; Knotts TA; Siesky A; Nelson DH; Karathanasis SK; Fontenot GK; Birnbaum MJ; Summers SA
    Cell Metab; 2007 Mar; 5(3):167-79. PubMed ID: 17339025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting sphingolipid metabolism in the treatment of obesity/type 2 diabetes.
    Bellini L; Campana M; Mahfouz R; Carlier A; Véret J; Magnan C; Hajduch E; Le Stunff H
    Expert Opin Ther Targets; 2015; 19(8):1037-50. PubMed ID: 25814122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in expression and localization of GPRC5B and RARalpha in the placenta and yolk sac during middle to late gestation in mice.
    Imanishi S; Sugimoto M; Morita M; Kume S; Manabe N
    J Reprod Dev; 2007 Oct; 53(5):1131-6. PubMed ID: 17652913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flanking gene problem leads to the discovery of a Gprc5b splice variant predominantly expressed in C57Bl/6J mouse brain and in maturing neurons.
    Cool BH; Chan GC; Lee L; Oshima J; Martin GM; Hu Q
    PLoS One; 2010 Apr; 5(4):e10351. PubMed ID: 20436672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids.
    Hannun YA; Linardic CM
    Biochim Biophys Acta; 1993 Dec; 1154(3-4):223-36. PubMed ID: 8280742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphingolipids: players in the pathology of metabolic disease.
    Cowart LA
    Trends Endocrinol Metab; 2009 Jan; 20(1):34-42. PubMed ID: 19008117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingolipid synthetic pathways are major regulators of lipid homeostasis.
    Worgall TS
    Adv Exp Med Biol; 2011; 721():139-48. PubMed ID: 21910087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CerS6-Derived Sphingolipids Interact with Mff and Promote Mitochondrial Fragmentation in Obesity.
    Hammerschmidt P; Ostkotte D; Nolte H; Gerl MJ; Jais A; Brunner HL; Sprenger HG; Awazawa M; Nicholls HT; Turpin-Nolan SM; Langer T; Krüger M; Brügger B; Brüning JC
    Cell; 2019 May; 177(6):1536-1552.e23. PubMed ID: 31150623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of sphingolipid signalling in diabetes‑associated pathologies (Review).
    Ng ML; Wadham C; Sukocheva OA
    Int J Mol Med; 2017 Feb; 39(2):243-252. PubMed ID: 28075451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingolipid signalling domains floating on rafts or buried in caves?
    Dobrowsky RT
    Cell Signal; 2000 Feb; 12(2):81-90. PubMed ID: 10679576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principles of bioactive lipid signalling: lessons from sphingolipids.
    Hannun YA; Obeid LM
    Nat Rev Mol Cell Biol; 2008 Feb; 9(2):139-50. PubMed ID: 18216770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingolipids in mammalian cell signalling.
    Ohanian J; Ohanian V
    Cell Mol Life Sci; 2001 Dec; 58(14):2053-68. PubMed ID: 11814056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.