These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32154984)

  • 1. Structural optimization and finite element analysis of poly-l-lactide acid coronary stent with improved radial strength and acute recoil rate.
    Song K; Bi Y; Zhao H; Wu T; Xu F; Zhao G
    J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2754-2764. PubMed ID: 32154984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents.
    Wang Q; Fang G; Zhao Y; Wang G; Cai T
    J Mech Behav Biomed Mater; 2017 Jan; 65():415-427. PubMed ID: 27643678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational analysis of the radial mechanical performance of PLLA coronary artery stents.
    Pauck RG; Reddy BD
    Med Eng Phys; 2015 Jan; 37(1):7-12. PubMed ID: 25456397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticles-reinforced poly-l-lactic acid composite materials as bioresorbable scaffold candidates for coronary stents: Insights from mechanical and finite element analysis.
    Toong DWY; Ng JCK; Cui F; Leo HL; Zhong L; Lian SS; Venkatraman S; Tan LP; Huang YY; Ang HY
    J Mech Behav Biomed Mater; 2022 Jan; 125():104977. PubMed ID: 34814078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Future Balloon-Expandable Stents: High or Low-Strength Materials?
    Khalilimeybodi A; Alishzadeh Khoei A; Sharif-Kashani B
    Cardiovasc Eng Technol; 2020 Apr; 11(2):188-204. PubMed ID: 31836964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Six-month evaluation of novel bioabsorbable scaffolds composed of poly-L-lactic acid and amorphous calcium phosphate nanoparticles in porcine coronary arteries.
    Dinh Nguyen T; Feng G; Yi X; Lyu Y; Lan Z; Xia J; Wu T; Jiang X
    J Biomater Appl; 2018 Aug; 33(2):227-233. PubMed ID: 30096995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel double arrowhead auxetic coronary stent.
    Gupta K; Meena K
    Comput Biol Med; 2023 Nov; 166():107525. PubMed ID: 37778216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Analysis of the Utilisation of the Shape Memory Effect and Balloon Expansion in Fully Polymeric Stent Deployment.
    Bobel AC; McHugh PE
    Cardiovasc Eng Technol; 2018 Mar; 9(1):60-72. PubMed ID: 29243163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure design and mechanical performance analysis of three kinds of bioresorbable poly-lactic acid (PLA) stents.
    Wang Y; Wu H; Fan S; Wu J; Yang S
    Comput Methods Biomech Biomed Engin; 2023 Jan; 26(1):25-37. PubMed ID: 35341394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of in vivo acute stent recoil between the bioabsorbable everolimus-eluting coronary stent and the everolimus-eluting cobalt chromium coronary stent: insights from the ABSORB and SPIRIT trials.
    Tanimoto S; Serruys PW; Thuesen L; Dudek D; de Bruyne B; Chevalier B; Ormiston JA
    Catheter Cardiovasc Interv; 2007 Oct; 70(4):515-23. PubMed ID: 17503509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of in vivo acute stent recoil between the bioresorbable everolimus-eluting coronary scaffolds (revision 1.0 and 1.1) and the metallic everolimus-eluting stent.
    Onuma Y; Serruys PW; Gomez J; de Bruyne B; Dudek D; Thuesen L; Smits P; Chevalier B; McClean D; Koolen J; Windecker S; Whitbourn R; Meredith I; Garcia-Garcia H; Ormiston JA;
    Catheter Cardiovasc Interv; 2011 Jul; 78(1):3-12. PubMed ID: 21413120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-objective design optimization of bioresorbable braided stents.
    Carbonaro D; Lucchetti A; Audenino AL; Gries T; Vaughan TJ; Chiastra C
    Comput Methods Programs Biomed; 2023 Dec; 242():107781. PubMed ID: 37683458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a Bioabsorbable Self-Expandable Vein Stent-Base Made of Poly(L-lactide) In Vitro and In Vivo.
    Løvdal AL; Calve S; Yang S; Van Alstine W; Binkert CA; Klausen K
    Cardiovasc Intervent Radiol; 2017 Jan; 40(1):112-119. PubMed ID: 27815574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Current Literature on Bioabsorbable Stents: a Review.
    Omar WA; Kumbhani DJ
    Curr Atheroscler Rep; 2019 Nov; 21(12):54. PubMed ID: 31768641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of material characteristics on the mechanical properties of a poly(L-lactide) coronary stent.
    Grabow N; Martin H; Schmitz KP
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():503-5. PubMed ID: 12451906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Objective Optimization of Bioresorbable Magnesium Alloy Stent by Kriging Surrogate Model.
    Wang H; Jiao L; Sun J; Yan P; Wang X; Qiu T
    Cardiovasc Eng Technol; 2022 Dec; 13(6):829-839. PubMed ID: 35414048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element simulation and testing of cobalt-chromium stent: a parametric study on radial strength, recoil, foreshortening, and dogboning.
    Kumar A; Bhatnagar N
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(3):245-259. PubMed ID: 33021106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel ultrahigh molecular weight amorphous PLLA bioresorbable coronary scaffold upsized up to 0.8 mm beyond nominal diameter: An OCT and histopathology study in porcine coronary artery model.
    Gasior P; Cheng Y; Estrada EA; Jenn McGregor ; Ramzipoor K; Lee C; Conditt GB; Rousselle SD; Granada JF; Kaluza GL
    Catheter Cardiovasc Interv; 2018 Feb; 91(3):378-386. PubMed ID: 28471065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-objective optimisation of material properties and strut geometry for poly(L-lactic acid) coronary stents using response surface methodology.
    Blair RW; Dunne NJ; Lennon AB; Menary GH
    PLoS One; 2019; 14(8):e0218768. PubMed ID: 31449528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.