BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 32154997)

  • 1. One-pot porogen free method fabricated porous microsphere-aggregated 3D PCL scaffolds for bone tissue engineering.
    Yao Q; Liu Y; Pan Y; Miszuk JM; Sun H
    J Biomed Mater Res B Appl Biomater; 2020 Aug; 108(6):2699-2710. PubMed ID: 32154997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Elastic Mineralized 3D Electrospun PCL Nanofibrous Scaffold for Drug Release and Bone Tissue Engineering.
    Miszuk J; Liang Z; Hu J; Sanyour H; Hong Z; Fong H; Sun H
    ACS Appl Bio Mater; 2021 Apr; 4(4):3639-3648. PubMed ID: 33969280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying.
    Hejazi F; Mirzadeh H
    J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macro- and microporous polycaprolactone/duck's feet collagen scaffold fabricated by combining facile phase separation and particulate leaching techniques to enhance osteogenesis for bone tissue engineering.
    Song Y; Choi JH; Tumursukh NE; Kim NE; Jeon GY; Kim SE; Kim SI; Song JE; Elçin YM; Khang G
    J Biomater Sci Polym Ed; 2022 Jun; 33(8):1025-1042. PubMed ID: 35118913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of polycaprolactone microspheres-aggregated scaffold with ultra big pores and fuzzy sphere surface by a one-step phase separation method.
    Wang M; Ma L; Li D; Jiang P; Gao C
    J Biomed Mater Res A; 2013 Nov; 101(11):3219-27. PubMed ID: 23554334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering.
    Xu T; Miszuk JM; Zhao Y; Sun H; Fong H
    Adv Healthc Mater; 2015 Oct; 4(15):2238-46. PubMed ID: 26332611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique.
    Wang W; Nie W; Zhou X; Feng W; Chen L; Zhang Q; You Z; Shi Q; Peng C; He C
    Acta Biomater; 2018 Oct; 79():168-181. PubMed ID: 30121374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of 3D PCL microsphere/TiO
    Khoshroo K; Jafarzadeh Kashi TS; Moztarzadeh F; Tahriri M; Jazayeri HE; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):586-598. PubMed ID: 27770931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering.
    Cui Z; Lin L; Si J; Luo Y; Wang Q; Lin Y; Wang X; Chen W
    J Biomater Sci Polym Ed; 2017 Jun; 28(9):826-845. PubMed ID: 28278041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.
    Wang C; Zhao Q; Wang M
    Biofabrication; 2017 Jun; 9(2):025031. PubMed ID: 28589918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering.
    Liu X; Smith LA; Hu J; Ma PX
    Biomaterials; 2009 Apr; 30(12):2252-8. PubMed ID: 19152974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor.
    Duan B; Wang M
    J R Soc Interface; 2010 Oct; 7 Suppl 5(Suppl 5):S615-29. PubMed ID: 20504805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects.
    Kim SE; Yun YP; Shim KS; Kim HJ; Park K; Song HR
    Biomed Mater; 2016 Sep; 11(5):055005. PubMed ID: 27680282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair.
    Gu X; Zha Y; Li Y; Chen J; Liu S; Du Y; Zhang S; Wang J
    Acta Biomater; 2022 Mar; 141():190-197. PubMed ID: 35041901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration.
    Gandolfi MG; Zamparini F; Degli Esposti M; Chiellini F; Fava F; Fabbri P; Taddei P; Prati C
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():341-361. PubMed ID: 31147007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactivity and bone healing properties of biomimetic porous composite scaffold: in vitro and in vivo studies.
    Veronesi F; Giavaresi G; Guarino V; Raucci MG; Sandri M; Tampieri A; Ambrosio L; Fini M
    J Biomed Mater Res A; 2015 Sep; 103(9):2932-41. PubMed ID: 25689266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.