These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32155062)

  • 1. Capturing the Effects of Explicit Waters in Implicit Electrostatics Modeling: Qualitative Justification of Gaussian-Based Dielectric Models in DelPhi.
    Chakravorty A; Panday S; Pahari S; Zhao S; Alexov E
    J Chem Inf Model; 2020 Apr; 60(4):2229-2246. PubMed ID: 32155062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A super-Gaussian Poisson-Boltzmann model for electrostatic free energy calculation: smooth dielectric distribution for protein cavities and in both water and vacuum states.
    Hazra T; Ahmed Ullah S; Wang S; Alexov E; Zhao S
    J Math Biol; 2019 Jul; 79(2):631-672. PubMed ID: 31030299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Modeling of Polar Component of Solvation Energy using Smooth Gaussian-Based Dielectric Function.
    Li L; Li C; Alexov E
    J Theor Comput Chem; 2014 May; 13(3):. PubMed ID: 25018579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproducing the Ensemble Average Polar Solvation Energy of a Protein from a Single Structure: Gaussian-Based Smooth Dielectric Function for Macromolecular Modeling.
    Chakravorty A; Jia Z; Li L; Zhao S; Alexov E
    J Chem Theory Comput; 2018 Feb; 14(2):1020-1032. PubMed ID: 29350933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaussian-Based Smooth Dielectric Function: A Surface-Free Approach for Modeling Macromolecular Binding in Solvents.
    Chakravorty A; Jia Z; Peng Y; Tajielyato N; Wang L; Alexov E
    Front Mol Biosci; 2018; 5():25. PubMed ID: 29637074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.
    Sun H; Wen J; Zhao Y; Li B; McCammon JA
    J Chem Phys; 2015 Dec; 143(24):243110. PubMed ID: 26723595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarizable atomic multipole solutes in a Poisson-Boltzmann continuum.
    Schnieders MJ; Baker NA; Ren P; Ponder JW
    J Chem Phys; 2007 Mar; 126(12):124114. PubMed ID: 17411115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.
    Bonthuis DJ; Netz RR
    J Phys Chem B; 2013 Oct; 117(39):11397-413. PubMed ID: 24063251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description.
    Bauer S; Mathias G; Tavan P
    J Chem Phys; 2014 Mar; 140(10):104102. PubMed ID: 24628147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating dipolar solvents with variable density in Poisson-Boltzmann electrostatics.
    Azuara C; Orland H; Bon M; Koehl P; Delarue M
    Biophys J; 2008 Dec; 95(12):5587-605. PubMed ID: 18820239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the electrostatic potential of asymmetric lipopolysaccharide membranes: the MEMPOT algorithm implemented in DelPhi.
    Dias RP; Lin L; Soares TA; Alexov E
    J Comput Chem; 2014 Jul; 35(19):1418-1429. PubMed ID: 24799021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implicit electrostatic solvent model with continuous dielectric permittivity function.
    Basilevsky MV; Grigoriev FV; Nikitina EA; Leszczynski J
    J Phys Chem B; 2010 Feb; 114(7):2457-66. PubMed ID: 20166682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pKa predictions for proteins, RNAs, and DNAs with the Gaussian dielectric function using DelPhi pKa.
    Wang L; Li L; Alexov E
    Proteins; 2015 Dec; 83(12):2186-97. PubMed ID: 26408449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvation forces on biomolecular structures: a comparison of explicit solvent and Poisson-Boltzmann models.
    Wagoner J; Baker NA
    J Comput Chem; 2004 Oct; 25(13):1623-9. PubMed ID: 15264256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dielectric-layer hybrid solvation model with spheroidal cavities in biomolecular simulations.
    Xue C; Deng S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016701. PubMed ID: 20365496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multiscale coarse-grained polarizable solvent model for handling long tail bulk electrostatics.
    Masella M; Borgis D; Cuniasse P
    J Comput Chem; 2013 May; 34(13):1112-24. PubMed ID: 23382002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.