These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 32155072)
1. Defining, Calculating, and Converging Observables of a Kinetic Transition Network. Swinburne TD; Wales DJ J Chem Theory Comput; 2020 Apr; 16(4):2661-2679. PubMed ID: 32155072 [TBL] [Abstract][Full Text] [Related]
2. Calculating rate constants and committor probabilities for transition networks by graph transformation. Wales DJ J Chem Phys; 2009 May; 130(20):204111. PubMed ID: 19485441 [TBL] [Abstract][Full Text] [Related]
3. Graph transformation method for calculating waiting times in Markov chains. Trygubenko SA; Wales DJ J Chem Phys; 2006 Jun; 124(23):234110. PubMed ID: 16821910 [TBL] [Abstract][Full Text] [Related]
4. Metastability, spectrum, and eigencurrents of the Lennard-Jones-38 network. Cameron MK J Chem Phys; 2014 Nov; 141(18):184113. PubMed ID: 25399138 [TBL] [Abstract][Full Text] [Related]
5. Rare events and first passage time statistics from the energy landscape. Swinburne TD; Kannan D; Sharpe DJ; Wales DJ J Chem Phys; 2020 Oct; 153(13):134115. PubMed ID: 33032418 [TBL] [Abstract][Full Text] [Related]
6. Identifying mechanistically distinct pathways in kinetic transition networks. Sharpe DJ; Wales DJ J Chem Phys; 2019 Sep; 151(12):124101. PubMed ID: 31575205 [TBL] [Abstract][Full Text] [Related]
7. Kinetic Diagram Analysis: A Python Library for Calculating Steady-State Observables of Biochemical Systems Analytically. Carl Awtrey N; Beckstein O bioRxiv; 2024 Aug; ():. PubMed ID: 38854140 [TBL] [Abstract][Full Text] [Related]
8. Kinetic Diagram Analysis: A Python Library for Calculating Steady-State Observables of Biochemical Systems Analytically. Awtrey NC; Beckstein O J Chem Theory Comput; 2024 Sep; 20(17):7646-7666. PubMed ID: 39160681 [TBL] [Abstract][Full Text] [Related]
9. Numerical analysis of first-passage processes in finite Markov chains exhibiting metastability. Sharpe DJ; Wales DJ Phys Rev E; 2021 Jul; 104(1-2):015301. PubMed ID: 34412280 [TBL] [Abstract][Full Text] [Related]
10. Minima hopping guided path search: an efficient method for finding complex chemical reaction pathways. Schaefer B; Mohr S; Amsler M; Goedecker S J Chem Phys; 2014 Jun; 140(21):214102. PubMed ID: 24907985 [TBL] [Abstract][Full Text] [Related]
11. Efficient Bayesian estimation of Markov model transition matrices with given stationary distribution. Trendelkamp-Schroer B; Noé F J Chem Phys; 2013 Apr; 138(16):164113. PubMed ID: 23635117 [TBL] [Abstract][Full Text] [Related]
12. Loss surface of XOR artificial neural networks. Mehta D; Zhao X; Bernal EA; Wales DJ Phys Rev E; 2018 May; 97(5-1):052307. PubMed ID: 29906831 [TBL] [Abstract][Full Text] [Related]
13. Estimating the sampling error: distribution of transition matrices and functions of transition matrices for given trajectory data. Metzner P; Noé F; Schütte C Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021106. PubMed ID: 19792076 [TBL] [Abstract][Full Text] [Related]
14. Energy Landscape for the Membrane Fusion Pathway in Influenza A Hemagglutinin From Discrete Path Sampling. Burke DF; Mantell RG; Pitt CE; Wales DJ Front Chem; 2020; 8():575195. PubMed ID: 33102445 [TBL] [Abstract][Full Text] [Related]
16. Sum over Histories Representation for Kinetic Sensitivity Analysis: How Chemical Pathways Change When Reaction Rate Coefficients Are Varied. Bai S; Davis MJ; Skodje RT J Phys Chem A; 2015 Nov; 119(45):11039-52. PubMed ID: 26493932 [TBL] [Abstract][Full Text] [Related]
17. Computationally efficient characterization of potential energy surfaces based on fingerprint distances. Schaefer B; Goedecker S J Chem Phys; 2016 Jul; 145(3):034101. PubMed ID: 27448868 [TBL] [Abstract][Full Text] [Related]
18. Inferring Microscopic Kinetic Rates from Stationary State Distributions. Dixit PD; Dill KA J Chem Theory Comput; 2014 Aug; 10(8):3002-3005. PubMed ID: 25136269 [TBL] [Abstract][Full Text] [Related]
19. Inferring Transition Rates of Networks from Populations in Continuous-Time Markov Processes. Dixit PD; Jain A; Stock G; Dill KA J Chem Theory Comput; 2015 Nov; 11(11):5464-72. PubMed ID: 26574334 [TBL] [Abstract][Full Text] [Related]
20. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks. Salis H; Kaznessis YN J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]