BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32155098)

  • 1. Transscleral Iontophoresis for Noninvasive Ocular Drug Delivery of Macromolecules.
    Molokhia S; Papangkorn K; Butler C; Higuchi JW; Brar B; Ambati B; Li SK; Higuchi WI
    J Ocul Pharmacol Ther; 2020 May; 36(4):247-256. PubMed ID: 32155098
    [No Abstract]   [Full Text] [Related]  

  • 2. Transscleral iontophoretic and intravitreal delivery of a macromolecule: study of ocular distribution in vivo and postmortem with MRI.
    Molokhia SA; Jeong EK; Higuchi WI; Li SK
    Exp Eye Res; 2009 Mar; 88(3):418-25. PubMed ID: 19000673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of penetration routes and distribution of ionic permeants during and after transscleral iontophoresis with magnetic resonance imaging.
    Molokhia SA; Jeong EK; Higuchi WI; Li SK
    Int J Pharm; 2007 Apr; 335(1-2):46-53. PubMed ID: 17236728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iontophoretic transport of charged macromolecules across human sclera.
    Chopra P; Hao J; Li SK
    Int J Pharm; 2010 Mar; 388(1-2):107-13. PubMed ID: 20045044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro permeability of a model protein across ocular tissues and effect of iontophoresis on the transscleral delivery.
    Tratta E; Pescina S; Padula C; Santi P; Nicoli S
    Eur J Pharm Biopharm; 2014 Sep; 88(1):116-22. PubMed ID: 24816128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound-mediated transscleral delivery of macromolecules to the posterior segment of rabbit eye in vivo.
    Suen WL; Wong HS; Yu Y; Lau LC; Lo AC; Chau Y
    Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):4358-65. PubMed ID: 23722390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance imaging study of current and ion delivery into the eye during transscleral and transcorneal iontophoresis.
    Li SK; Jeong EK; Hastings MS
    Invest Ophthalmol Vis Sci; 2004 Apr; 45(4):1224-31. PubMed ID: 15037591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transscleral passive and iontophoretic transport: theory and analysis.
    Li SK; Hao J
    Expert Opin Drug Deliv; 2018 Mar; 15(3):283-299. PubMed ID: 29149574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of subconjunctival delivery with model ionic permeants and magnetic resonance imaging.
    Li SK; Molokhia SA; Jeong EK
    Pharm Res; 2004 Dec; 21(12):2175-84. PubMed ID: 15648248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced transscleral lontophoretic transport with ion-exchange membrane.
    Li SK; Zhu H; Higuchi WI
    Pharm Res; 2006 Aug; 23(8):1857-67. PubMed ID: 16841198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of barriers and barrier alteration in transscleral iontophoresis.
    Molokhia SA; Jeong EK; Higuchi WI; Li SK
    J Pharm Sci; 2008 Feb; 97(2):831-44. PubMed ID: 17879296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vitro permeation of bevacizumab through human sclera: effect of iontophoresis application.
    Pescina S; Ferrari G; Govoni P; Macaluso C; Padula C; Santi P; Nicoli S
    J Pharm Pharmacol; 2010 Sep; 62(9):1189-94. PubMed ID: 20796199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of human sclera barrier properties for transscleral delivery of bevacizumab and ranibizumab.
    Wen H; Hao J; Li SK
    J Pharm Sci; 2013 Mar; 102(3):892-903. PubMed ID: 23212655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of formulation factors on the trans-scleral iontophoretic and post-iontophoretic transports of a 40 kDa dextran in vitro.
    Pescina S; Padula C; Santi P; Nicoli S
    Eur J Pharm Sci; 2011 Apr; 42(5):503-8. PubMed ID: 21352911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of asymmetric donor-receiver ion concentration upon transscleral iontophoretic transport.
    Li SK; Zhang Y; Zhu H; Higuchi WI; White HS
    J Pharm Sci; 2005 Apr; 94(4):847-60. PubMed ID: 15736190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methotrexate delivery to the eye using transscleral hydrogel iontophoresis.
    Eljarrat-Binstock E; Domb AJ; Orucov F; Frucht-Pery J; Pe'er J
    Curr Eye Res; 2007; 32(7-8):639-46. PubMed ID: 17852187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo evaluation of carboplatin delivery to the eye using hydrogel-iontophoresis.
    Eljarrat-Binstock E; Domb AJ; Orucov F; Dagan A; Frucht-Pery J; Pe'er J
    Curr Eye Res; 2008 Mar; 33(3):269-75. PubMed ID: 18350438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact Lens Based Drug Delivery to the Posterior Segment Via Iontophoresis in Cadaver Rabbit Eyes.
    Christopher K; Chauhan A
    Pharm Res; 2019 Apr; 36(6):87. PubMed ID: 31004227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional Transport Model for Intravitreal and Suprachoroidal Drug Injection.
    Zhang Y; Bazzazi H; Lima E Silva R; Pandey NB; Green JJ; Campochiaro PA; Popel AS
    Invest Ophthalmol Vis Sci; 2018 Oct; 59(12):5266-5276. PubMed ID: 30383198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suprachoroidal delivery of bevacizumab in rabbit in vivo eyes: Rapid distribution throughout the posterior segment.
    Sher I; Goldberg Z; Bubis E; Barak Y; Rotenstreich Y
    Eur J Pharm Biopharm; 2021 Dec; 169():200-210. PubMed ID: 34662718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.