These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32155189)

  • 1. Fractal solar panels: Optimizing aesthetic and electrical performances.
    Roe ET; Bies AJ; Montgomery RD; Watterson WJ; Parris B; Boydston CR; Sereno ME; Taylor RP
    PLoS One; 2020; 15(3):e0229945. PubMed ID: 32155189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perceptual and physiological responses to the visual complexity of fractal patterns.
    Taylor RP; Spehar B; Wise JA; Clifford CW; Newell BR; Hagerhall CM; Purcell T; Martin TP
    Nonlinear Dynamics Psychol Life Sci; 2005 Jan; 9(1):89-114. PubMed ID: 15629069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractal Fluency: Processing of Fractal Stimuli Across Sight, Sound, and Touch.
    Taylor RP; Viengkham C; Smith JH; Rowland C; Moslehi S; Stadlober S; Lesjak A; Lesjak M; Spehar B
    Adv Neurobiol; 2024; 36():907-934. PubMed ID: 38468069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractal Electrodes as a Generic Interface for Stimulating Neurons.
    Watterson WJ; Montgomery RD; Taylor RP
    Sci Rep; 2017 Jul; 7(1):6717. PubMed ID: 28751652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Fractal Iconography to Emulate Nature's Aesthetics.
    Owen E; Rowland C; Philliber S; Sereno ME; Taylor RP
    Nonlinear Dynamics Psychol Life Sci; 2024 Jan; 28(1):111-120. PubMed ID: 38153303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel fractal planar electrode design for efficient neural stimulation.
    Xuefeng Wei ; Benmassaoud M; Meller M; Kuchibhatla S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1802-1805. PubMed ID: 28268678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aesthetic Responses to Exact Fractals Driven by Physical Complexity.
    Bies AJ; Blanc-Goldhammer DR; Boydston CR; Taylor RP; Sereno ME
    Front Hum Neurosci; 2016; 10():210. PubMed ID: 27242475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aesthetics and Psychological Effects of Fractal Based Design.
    Robles KE; Roberts M; Viengkham C; Smith JH; Rowland C; Moslehi S; Stadlober S; Lesjak A; Lesjak M; Taylor RP; Spehar B; Sereno ME
    Front Psychol; 2021; 12():699962. PubMed ID: 34484047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of dielectrophoresis using fractal gold nanostructured electrodes.
    Koklu A; Sabuncu AC; Beskok A
    Electrophoresis; 2017 Jun; 38(11):1458-1465. PubMed ID: 28130914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid tandem solar cell enhanced by a metallic hole-array as the intermediate electrode.
    Zhang X; Huang Q; Hu J; Knize RJ; Lu Y
    Opt Express; 2014 Oct; 22 Suppl 6():A1400-11. PubMed ID: 25607297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal integration of visual stimuli and its relevance to the use of a divisional power supply scheme for retinal prosthesis.
    Tsai YC; Wu JJ; Lin PK; Lin BJ; Wang PS; Liu CH; Wu CY; Chiao CC
    PLoS One; 2020; 15(2):e0228861. PubMed ID: 32084146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of fractal electrodes for efficient neural stimulation.
    Golestanirad L; Pollo C; Graham SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():791-4. PubMed ID: 24109806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophilic fractals and the visual journey of organic screen-savers.
    Taylor RP; Sprott JC
    Nonlinear Dynamics Psychol Life Sci; 2008 Jan; 12(1):117-29. PubMed ID: 18157930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Power conversion efficiency enhancement based on the bio-inspired hierarchical antireflection layer in dye sensitized solar cells.
    Ahn HJ; Kim SI; Yoon JC; Lee JS; Jang JH
    Nanoscale; 2012 Aug; 4(15):4464-9. PubMed ID: 22744214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells.
    Tai Q; Chen B; Guo F; Xu S; Hu H; Sebo B; Zhao XZ
    ACS Nano; 2011 May; 5(5):3795-9. PubMed ID: 21469717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts.
    Palanchoke U; Jovanov V; Kurz H; Obermeyer P; Stiebig H; Knipp D
    Opt Express; 2012 Mar; 20(6):6340-7. PubMed ID: 22418515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surface modifications on ZnO nanorod arrays electrode for dye-sensitized solar cells.
    Qin Z; Huang Y; Liao Q; Zhang Z; Zhang Y
    J Nanosci Nanotechnol; 2012 Jan; 12(1):463-8. PubMed ID: 22524003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dry-Deposited Transparent Carbon Nanotube Film as Front Electrode in Colloidal Quantum Dot Solar Cells.
    Zhang X; Aitola K; Hägglund C; Kaskela A; Johansson MB; Sveinbjörnsson K; Kauppinen EI; Johansson EM
    ChemSusChem; 2017 Jan; 10(2):434-441. PubMed ID: 27873480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Chameleonic Change of Red Cabbage Depending on Broad pH Range for Dye-Sensitized Solar Cells.
    Park KH; Kim TY; Ko HS; Han EM; Lee SH; Kim JH; Lee JW
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5840-4. PubMed ID: 26369159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.