BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 32155215)

  • 1. The enhancement of CCL2 and CCL5 by human bone marrow-derived mesenchymal stem/stromal cells might contribute to inflammatory suppression and axonal extension after spinal cord injury.
    Yagura K; Ohtaki H; Tsumuraya T; Sato A; Miyamoto K; Kawada N; Suzuki K; Nakamura M; Kanzaki K; Dohi K; Izumizaki M; Hiraizumi Y; Honda K
    PLoS One; 2020; 15(3):e0230080. PubMed ID: 32155215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis.
    Raghu H; Lepus CM; Wang Q; Wong HH; Lingampalli N; Oliviero F; Punzi L; Giori NJ; Goodman SB; Chu CR; Sokolove JB; Robinson WH
    Ann Rheum Dis; 2017 May; 76(5):914-922. PubMed ID: 27965260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human mesenchymal stem/stromal cells suppress spinal inflammation in mice with contribution of pituitary adenylate cyclase-activating polypeptide (PACAP).
    Tsumuraya T; Ohtaki H; Song D; Sato A; Watanabe J; Hiraizumi Y; Nakamachi T; Xu Z; Dohi K; Hashimoto H; Atsumi T; Shioda S
    J Neuroinflammation; 2015 Feb; 12():35. PubMed ID: 25889720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment.
    Watanabe S; Uchida K; Nakajima H; Matsuo H; Sugita D; Yoshida A; Honjoh K; Johnson WE; Baba H
    Stem Cells; 2015 Jun; 33(6):1902-14. PubMed ID: 25809552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity.
    Matsubara K; Matsushita Y; Sakai K; Kano F; Kondo M; Noda M; Hashimoto N; Imagama S; Ishiguro N; Suzumura A; Ueda M; Furukawa K; Yamamoto A
    J Neurosci; 2015 Feb; 35(6):2452-64. PubMed ID: 25673840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced axonal regeneration by transplanted Wnt3a-secreting human mesenchymal stem cells in a rat model of spinal cord injury.
    Seo DK; Kim JH; Min J; Yoon HH; Shin ES; Kim SW; Jeon SR
    Acta Neurochir (Wien); 2017 May; 159(5):947-957. PubMed ID: 28160063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recruitment of γδ T cells to the lesion via the CCL2/CCR2 signaling after spinal cord injury.
    Xu P; Zhang F; Chang MM; Zhong C; Sun CH; Zhu HR; Yao JC; Li ZZ; Li ST; Zhang WC; Sun GD
    J Neuroinflammation; 2021 Mar; 18(1):64. PubMed ID: 33653377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury.
    Sasaki M; Radtke C; Tan AM; Zhao P; Hamada H; Houkin K; Honmou O; Kocsis JD
    J Neurosci; 2009 Nov; 29(47):14932-41. PubMed ID: 19940189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photobiomodulation Promotes Neuronal Axon Regeneration After Oxidative Stress and Induces a Change in Polarization from M1 to M2 in Macrophages via Stimulation of CCL2 in Neurons: Relevance to Spinal Cord Injury.
    Zheng Q; Zhang J; Zuo X; Sun J; Liang Z; Hu X; Wang Z; Li K; Song J; Ding T; Shen X; Ma Y; Li P
    J Mol Neurosci; 2021 Jun; 71(6):1290-1300. PubMed ID: 33417168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion.
    Ma M; Wei T; Boring L; Charo IF; Ransohoff RM; Jakeman LB
    J Neurosci Res; 2002 Jun; 68(6):691-702. PubMed ID: 12111830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restorative benefits of transplanting human mesenchymal stromal cells overexpressing arginine decarboxylase genes after spinal cord injury.
    Park YM; Han SH; Seo SK; Park KA; Lee WT; Lee JE
    Cytotherapy; 2015 Jan; 17(1):25-37. PubMed ID: 25442787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CCR2 downregulation attenuates spinal cord injury by suppressing inflammatory monocytes.
    Zhang Q; Zhu C; Li X; Shi Y; Zhang Z
    Synapse; 2021 May; 75(5):e22191. PubMed ID: 33098174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord.
    Mahmood A; Wu H; Qu C; Xiong Y; Chopp M
    J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS.
    Babcock AA; Kuziel WA; Rivest S; Owens T
    J Neurosci; 2003 Aug; 23(21):7922-30. PubMed ID: 12944523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of beta-chemokines MCP-1 and RANTES and their receptors CCR1, CCR2, CCR5 in acute rejection and chronic allograft nephropathy of human renal allografts.
    Rüster M; Sperschneider H; Fünfstück R; Stein G; Gröne HJ
    Clin Nephrol; 2004 Jan; 61(1):30-9. PubMed ID: 14964455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury.
    Stewart AN; Matyas JJ; Welchko RM; Goldsmith AD; Zeiler SE; Hochgeschwender U; Lu M; Nan Z; Rossignol J; Dunbar GL
    Restor Neurol Neurosci; 2017; 35(4):395-411. PubMed ID: 28598857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution intravital imaging reveals that blood-derived macrophages but not resident microglia facilitate secondary axonal dieback in traumatic spinal cord injury.
    Evans TA; Barkauskas DS; Myers JT; Hare EG; You JQ; Ransohoff RM; Huang AY; Silver J
    Exp Neurol; 2014 Apr; 254():109-20. PubMed ID: 24468477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat.
    Cízková D; Rosocha J; Vanický I; Jergová S; Cízek M
    Cell Mol Neurobiol; 2006; 26(7-8):1167-80. PubMed ID: 16897366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force-dependent development of neuropathic central pain and time-related CCL2/CCR2 expression after graded spinal cord contusion injuries of the rat.
    Knerlich-Lukoschus F; Juraschek M; Blömer U; Lucius R; Mehdorn HM; Held-Feindt J
    J Neurotrauma; 2008 May; 25(5):427-48. PubMed ID: 18338959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.