These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32155447)

  • 1. miRNAs and their target genes regulate the antioxidant system of Zanthoxylum bungeanum under drought stress.
    Fei X; Li J; Kong L; Hu H; Tian J; Liu Y; Wei A
    Plant Physiol Biochem; 2020 May; 150():196-203. PubMed ID: 32155447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Identification of the
    Hu H; Ma L; Chen X; Fei X; He B; Luo Y; Liu Y; Wei A
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of Drought Response of 38 WRKY Transcription Factors of
    Fei X; Hou L; Shi J; Yang T; Liu Y; Wei A
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30586928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of miRNAs and their target genes in He-Ne laser pretreated wheat seedlings exposed to drought stress.
    Qiu Z; He Y; Zhang Y; Guo J; Wang L
    Ecotoxicol Environ Saf; 2018 Nov; 164():611-617. PubMed ID: 30153643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small RNA sequencing provides candidate miRNA-target pairs for revealing the mechanism of apomixis in Zanthoxylum bungeanum.
    Fei X; Lei Y; Qi Y; Wang S; Hu H; Wei A
    BMC Plant Biol; 2021 Apr; 21(1):178. PubMed ID: 33849456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression Stabilities of Ten Candidate Reference Genes for RT-qPCR in Zanthoxylum bungeanum Maxim.
    Fei X; Shi Q; Yang T; Fei Z; Wei A
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29601541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNA prediction and its function in regulating drought-related genes in cowpea.
    Shui XR; Chen ZW; Li JX
    Plant Sci; 2013 Sep; 210():25-35. PubMed ID: 23849110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of
    Li Z; Tariq A; Pan K; Graciano C; Sun F; Song D; Abiodun Olatunji O
    PeerJ; 2020; 8():e9040. PubMed ID: 32411523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Transcriptome Analysis and Expression of Genes Reveal the Biosynthesis and Accumulation Patterns of Key Flavonoids in Different Varieties of
    Sun L; Yu D; Wu Z; Wang C; Yu L; Wei A; Wang D
    J Agric Food Chem; 2019 Dec; 67(48):13258-13268. PubMed ID: 31714769
    [No Abstract]   [Full Text] [Related]  

  • 10. Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C₄) and Cleome spinosa (C₃) under drought stress.
    Uzilday B; Turkan I; Sekmen AH; Ozgur R; Karakaya HC
    Plant Sci; 2012 Jan; 182():59-70. PubMed ID: 22118616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated carbon dioxide and drought modulate physiology and storage-root development in sweet potato by regulating microRNAs.
    Saminathan T; Alvarado A; Lopez C; Shinde S; Gajanayake B; Abburi VL; Vajja VG; Jagadeeswaran G; Raja Reddy K; Nimmakayala P; Reddy UK
    Funct Integr Genomics; 2019 Jan; 19(1):171-190. PubMed ID: 30244303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and Characterization of Novel Maize Mirnas Involved in Different Genetic Background.
    Sheng L; Chai W; Gong X; Zhou L; Cai R; Li X; Zhao Y; Jiang H; Cheng B
    Int J Biol Sci; 2015; 11(7):781-93. PubMed ID: 26078720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of
    El-Esawi MA; Alayafi AA
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30769841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidant and photosystem II responses contribute to explain the drought-heat contrasting tolerance of two forage legumes.
    Signorelli S; Casaretto E; Sainz M; Díaz P; Monza J; Borsani O
    Plant Physiol Biochem; 2013 Sep; 70():195-203. PubMed ID: 23792824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction and verification of microRNAs related to proline accumulation under drought stress in potato.
    Yang J; Zhang N; Ma C; Qu Y; Si H; Wang D
    Comput Biol Chem; 2013 Oct; 46():48-54. PubMed ID: 23764530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice.
    Chung PJ; Jung H; Jeong DH; Ha SH; Choi YD; Kim JK
    BMC Genomics; 2016 Aug; 17():563. PubMed ID: 27501838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low Temperature Affects Fatty Acids Profiling and Key Synthesis Genes Expression Patterns in
    Tian J; Tian L; Chen M; Chen Y; Wei A
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216434
    [No Abstract]   [Full Text] [Related]  

  • 18. Cotton Late Embryogenesis Abundant (
    Magwanga RO; Lu P; Kirungu JN; Dong Q; Hu Y; Zhou Z; Cai X; Wang X; Hou Y; Wang K; Liu F
    G3 (Bethesda); 2018 Jul; 8(8):2781-2803. PubMed ID: 29934376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress.
    Sheikh Mohammadi MH; Etemadi N; Arab MM; Aalifar M; Arab M; Pessarakli M
    Plant Physiol Biochem; 2017 Feb; 111():129-143. PubMed ID: 27915174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global analysis of uncapped mRNA changes under drought stress and microRNA-dependent endonucleolytic cleavages in foxtail millet.
    Yi F; Chen J; Yu J
    BMC Plant Biol; 2015 Oct; 15():241. PubMed ID: 26444665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.