These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32155593)

  • 1. Crystal structure prediction of magnetic materials.
    Flores-Livas JA
    J Phys Condens Matter; 2020 Jul; 32(29):294002. PubMed ID: 32155593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inspired by nature: investigating tetrataenite for permanent magnet applications.
    Lewis LH; Mubarok A; Poirier E; Bordeaux N; Manchanda P; Kashyap A; Skomski R; Goldstein J; Pinkerton FE; Mishra RK; Kubic RC; Barmak K
    J Phys Condens Matter; 2014 Feb; 26(6):064213. PubMed ID: 24469336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of FeCo from soft to hard magnetic material by lattice engineering and nanopatterning.
    Hasegawa T; Kanatani S; Kazaana M; Takahashi K; Kumagai K; Hirao M; Ishio S
    Sci Rep; 2017 Oct; 7(1):13215. PubMed ID: 29038578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of single-phase L1
    Goto S; Kura H; Watanabe E; Hayashi Y; Yanagihara H; Shimada Y; Mizuguchi M; Takanashi K; Kita E
    Sci Rep; 2017 Oct; 7(1):13216. PubMed ID: 29038579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boron: Enabling Exciting Metal-Rich Structures and Magnetic Properties.
    Scheifers JP; Zhang Y; Fokwa BPT
    Acc Chem Res; 2017 Sep; 50(9):2317-2325. PubMed ID: 28792209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Omnidirectional zero-field ferromagnetic resonance driven by rotatable anisotropy in FeNi/FeMn bilayers without exchange bias.
    Wang W; Chai G; Xue D
    Sci Rep; 2017 May; 7(1):1341. PubMed ID: 28465579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fe-Ni composition dependence of magnetic anisotropy in artificially fabricated L1 0-ordered FeNi films.
    Kojima T; Ogiwara M; Mizuguchi M; Kotsugi M; Koganezawa T; Ohtsuki T; Tashiro TY; Takanashi K
    J Phys Condens Matter; 2014 Feb; 26(6):064207. PubMed ID: 24469082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant magnetic anisotropy in tetragonal FeCo alloys.
    Burkert T; Nordström L; Eriksson O; Heinonen O
    Phys Rev Lett; 2004 Jul; 93(2):027203. PubMed ID: 15323948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilisation of tetragonal FeCo structure with high magnetic anisotropy by the addition of V and N elements.
    Hasegawa T; Niibori T; Takemasa Y; Oikawa M
    Sci Rep; 2019 Mar; 9(1):5248. PubMed ID: 30918311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced magnetocrystalline anisotropy of Fe30Co70 nanowires by Cu additives and annealing.
    Palmero EM; Salikhov R; Wiedwald U; Bran C; Spasova M; Vázquez M; Farle M
    Nanotechnology; 2016 Sep; 27(36):365704. PubMed ID: 27479573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure effect on the order-disorder transformation in L1
    Tian LY; Eriksson O; Vitos L
    Sci Rep; 2020 Sep; 10(1):14766. PubMed ID: 32901047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized Route for the Fabrication of MnAlC Permanent Magnets by Arc Melting.
    Martínez-Sánchez H; Gámez JD; Valenzuela JL; Colorado HD; Marín L; Rodríguez LA; Snoeck E; Gatel C; Zamora LE; Pérez Alcázar GA; Tabares JA
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New permanent magnets; manganese compounds.
    Coey JM
    J Phys Condens Matter; 2014 Feb; 26(6):064211. PubMed ID: 24469291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles calculations of magnetic properties for analysis of magnetization processes in rare-earth permanent magnets.
    Tsuchiura H; Yoshioka T; Novák P; Fischbacher J; Kovacs A; Schrefl T
    Sci Technol Adv Mater; 2021; 22(1):748-757. PubMed ID: 34512178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational prediction of new magnetic materials.
    Rahmanian Koshkaki S; Allahyari Z; Oganov AR; Solozhenko VL; Polovov IB; Belozerov AS; Katanin AA; Anisimov VI; Tikhonov EV; Qian GR; Maksimtsev KV; Mukhamadeev AS; Chukin AV; Korolev AV; Mushnikov NV; Li H
    J Chem Phys; 2022 Sep; 157(12):124704. PubMed ID: 36182427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing rare earth free permanent magnets: insights from small Co clusters.
    Sen A; Sen P
    Phys Chem Chem Phys; 2019 Oct; 21(40):22577-22583. PubMed ID: 31589232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of L1
    Mandal S; Panigrahi A; Rath A; Bönisch M; Sengupta P; Debata M; Basu S
    ACS Omega; 2023 Apr; 8(15):13690-13701. PubMed ID: 37091413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dense arrays of cobalt nanorods as rare-earth free permanent magnets.
    Anagnostopoulou E; Grindi B; Lacroix LM; Ott F; Panagiotopoulos I; Viau G
    Nanoscale; 2016 Feb; 8(7):4020-9. PubMed ID: 26817959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery and Implications of Hidden Atomic-Scale Structure in a Metallic Meteorite.
    Kovács A; Lewis LH; Palanisamy D; Denneulin T; Schwedt A; Scott ERD; Gault B; Raabe D; Dunin-Borkowski RE; Charilaou M
    Nano Lett; 2021 Oct; 21(19):8135-8142. PubMed ID: 34529916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.