These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32155730)

  • 21. Dehydration of fructose, sucrose and inulin to 5-hydroxymethylfurfural over yeast-derived carbonaceous microspheres at low temperatures.
    Li X; Wang Y; Xie X; Huang C; Yang S
    RSC Adv; 2019 Mar; 9(16):9041-9048. PubMed ID: 35517693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic Dehydration of Fructose to 5-Hydroxymethylfurfural (HMF) in Low-Boiling Solvent Hexafluoroisopropanol (HFIP).
    Tschirner S; Weingart E; Teevs L; Prüße U
    Molecules; 2018 Jul; 23(8):. PubMed ID: 30050015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-pot conversion of disaccharide into 5-hydroxymethylfurfural catalyzed by imidazole ionic liquid.
    Qu Y; Li L; Wei Q; Huang C; Oleskowicz-Popiel P; Xu J
    Sci Rep; 2016 May; 6():26067. PubMed ID: 27181523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aqueous Phase Synthesis of 5-Hydroxymethylfurfural from Glucose over Large Pore Mesoporous Zirconium Phosphates: Effect of Calcination Temperature.
    Saravanan K; Park KS; Jeon S; Bae JW
    ACS Omega; 2018 Jan; 3(1):808-820. PubMed ID: 31457931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acid-catalyzed dehydration of fructose into 5-hydroxymethylfurfural by cellulose-derived amorphous carbon.
    Qi X; Guo H; Li L; Smith RL
    ChemSusChem; 2012 Nov; 5(11):2215-20. PubMed ID: 22927099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TiO
    Nayebi M; Faraji A; Bahadoran A; Othman ZJ; Arghavani S; Kargar PG; Sajjadinezhad SM; Varma RS
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8054-8065. PubMed ID: 36719302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acidic Zeolite L as a Highly Efficient Catalyst for Dehydration of Fructose to 5-Hydroxymethylfurfural in Ionic Liquid.
    Ma Z; Hu H; Sun Z; Fang W; Zhang J; Yang L; Zhang Y; Wang L
    ChemSusChem; 2017 Apr; 10(8):1669-1674. PubMed ID: 28272798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel Ordered Mesoporous Carbon Based Sulfonic Acid as an Efficient Catalyst in the Selective Dehydration of Fructose into 5-HMF: the Role of Solvent and Surface Chemistry.
    Karimi B; Mirzaei HM; Behzadnia H; Vali H
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19050-9. PubMed ID: 26259108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of sulfonated chitosan-derived carbon-based catalysts and their applications in the production of 5-hydroxymethylfurfural.
    Zhang T; Li W; Jin Y; Ou W
    Int J Biol Macromol; 2020 Aug; 157():368-376. PubMed ID: 32344078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of 5-hydroxymethylfurfural from highly concentrated aqueous fructose solutions using activated carbon.
    Nishimura Y; Suda M; Kuroha M; Kobayashi H; Nakajima K; Fukuoka A
    Carbohydr Res; 2019 Dec; 486():107826. PubMed ID: 31589993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mesoporous Porphyrin-Silica Nanocomposite as Solid Acid Catalyst for High Yield Synthesis of HMF in Water.
    Modak A; Mankar AR; Pant KK; Bhaumik A
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33925892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nafion-resin-modified mesocellular silica foam catalyst for 5-hydroxymethylfurfural production from D-fructose.
    Huang Z; Pan W; Zhou H; Qin F; Xu H; Shen W
    ChemSusChem; 2013 Jun; 6(6):1063-9. PubMed ID: 23670918
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sulfonic acid-functionalized chitosan-metal-organic framework composite for efficient and rapid conversion of fructose to 5-hydroxymethylfurfural.
    Darvishi S; Sadjadi S; Heravi MM
    Sci Rep; 2024 Mar; 14(1):5834. PubMed ID: 38461340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conversion of fructose, glucose, and cellulose to 5-hydroxymethylfurfural by alkaline earth phosphate catalysts in hot compressed water.
    Daorattanachai P; Khemthong P; Viriya-Empikul N; Laosiripojana N; Faungnawakij K
    Carbohydr Res; 2012 Dec; 363():58-61. PubMed ID: 23123573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose.
    Hansen TS; Woodley JM; Riisager A
    Carbohydr Res; 2009 Dec; 344(18):2568-72. PubMed ID: 19850284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuning Brønsted and Lewis acidity on phosphated titanium dioxides for efficient conversion of glucose to 5-hydroxymethylfurfural.
    Songtawee S; Rungtaweevoranit B; Klaysom C; Faungnawakij K
    RSC Adv; 2021 Sep; 11(47):29196-29206. PubMed ID: 35479552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphazene-Based Covalent Organic Framework as an Efficient Catalyst (COF-1) for the Dehydration of Fructose to 5-HMF.
    Saranya S; Vedachalam S
    ACS Omega; 2024 Mar; 9(11):12817-12824. PubMed ID: 38524424
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel microwave-assisted hydrothermal route for the synthesis of Zn
    Parameswaram G; Roy S
    RSC Adv; 2018 Aug; 8(50):28461-28471. PubMed ID: 35542478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dehydration of fructose to 5-hydroxymethylfurfural by rare earth metal trifluoromethanesulfonates in organic solvents.
    Wang F; Shi AW; Qin XX; Liu CL; Dong WS
    Carbohydr Res; 2011 May; 346(7):982-5. PubMed ID: 21453907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of 5-hydroxymethylfurfural from glucose, fructose, cellulose and agricultural wastes over sulfur-doped peanut shell catalysts in ionic liquid.
    Chang KL; Muega SC; Ofrasio BIG; Chen WH; Barte EG; Abarca RRM; de Luna MDG
    Chemosphere; 2022 Mar; 291(Pt 1):132829. PubMed ID: 34767843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.