BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32155735)

  • 1. Combined Use of CFTR Correctors in LGMD2D Myotubes Improves Sarcoglycan Complex Recovery.
    Carotti M; Scano M; Fancello I; Richard I; Risato G; Bensalah M; Soardi M; Sandonà D
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32155735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repairing folding-defective α-sarcoglycan mutants by CFTR correctors, a potential therapy for limb-girdle muscular dystrophy 2D.
    Carotti M; Marsolier J; Soardi M; Bianchini E; Gomiero C; Fecchio C; Henriques SF; Betto R; Sacchetto R; Richard I; Sandonà D
    Hum Mol Genet; 2018 Mar; 27(6):969-984. PubMed ID: 29351619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling the degradative route of the V247M α-sarcoglycan mutant responsible for LGMD-2D.
    Bianchini E; Fanin M; Mamchaoui K; Betto R; Sandonà D
    Hum Mol Genet; 2014 Jul; 23(14):3746-58. PubMed ID: 24565866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unravelling the Regions of Mutant F508del-CFTR More Susceptible to the Action of Four Cystic Fibrosis Correctors.
    Amico G; Brandas C; Moran O; Baroni D
    Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31683989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFTR corrector C17 is effective in muscular dystrophy, in vivo proof of concept in LGMDR3.
    Scano M; Benetollo A; Nogara L; Bondì M; Dalla Barba F; Soardi M; Furlan S; Akyurek EE; Caccin P; Carotti M; Sacchetto R; Blaauw B; Sandonà D
    Hum Mol Genet; 2022 Feb; 31(4):499-509. PubMed ID: 34505136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capturing the Direct Binding of CFTR Correctors to CFTR by Using Click Chemistry.
    Sinha C; Zhang W; Moon CS; Actis M; Yarlagadda S; Arora K; Woodroofe K; Clancy JP; Lin S; Ziady AG; Frizzell R; Fujii N; Naren AP
    Chembiochem; 2015 Sep; 16(14):2017-22. PubMed ID: 26227551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review.
    Yang H; Ma T
    Expert Opin Ther Pat; 2015; 25(9):991-1002. PubMed ID: 25971311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of novel F508del-CFTR traffic correctors among triazole derivatives.
    Bacalhau M; Ferreira FC; Kmit A; Souza FR; da Silva VD; Pimentel AS; Amaral MD; Buarque CD; Lopes-Pacheco M
    Eur J Pharmacol; 2023 Jan; 938():175396. PubMed ID: 36410419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of proteasome activity promotes the correct localization of disease-causing alpha-sarcoglycan mutants in HEK-293 cells constitutively expressing beta-, gamma-, and delta-sarcoglycan.
    Gastaldello S; D'Angelo S; Franzoso S; Fanin M; Angelini C; Betto R; Sandonà D
    Am J Pathol; 2008 Jul; 173(1):170-81. PubMed ID: 18535179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced therapeutic approaches in sarcoglycanopathies.
    Scano M; Benetollo A; Dalla Barba F; Sandonà D
    Curr Opin Pharmacol; 2024 Jun; 76():102459. PubMed ID: 38713975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cystic fibrosis V232D mutation inhibits CFTR maturation by disrupting a hydrophobic pocket rather than formation of aberrant interhelical hydrogen bonds.
    Loo TW; Clarke DM
    Biochem Pharmacol; 2014 Mar; 88(1):46-57. PubMed ID: 24412276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revertants, low temperature, and correctors reveal the mechanism of F508del-CFTR rescue by VX-809 and suggest multiple agents for full correction.
    Farinha CM; King-Underwood J; Sousa M; Correia AR; Henriques BJ; Roxo-Rosa M; Da Paula AC; Williams J; Hirst S; Gomes CM; Amaral MD
    Chem Biol; 2013 Jul; 20(7):943-55. PubMed ID: 23890012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rescue of CFTR NBD2 mutants N1303K and S1235R is influenced by the functioning of the autophagosome.
    Liu Q; Sabirzhanova I; Yanda MK; Bergbower EAS; Boinot C; Guggino WB; Cebotaru L
    J Cyst Fibros; 2018 Sep; 17(5):582-594. PubMed ID: 29936070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of CFTR correction by type I folding correctors.
    Fiedorczuk K; Chen J
    Cell; 2022 Jan; 185(1):158-168.e11. PubMed ID: 34995514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correctors of the Major Cystic Fibrosis Mutant Interact through Membrane-Spanning Domains.
    Laselva O; Molinski S; Casavola V; Bear CE
    Mol Pharmacol; 2018 Jun; 93(6):612-618. PubMed ID: 29618585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different outcome of sarcoglycan missense mutation between human and mouse.
    Henriques SF; Patissier C; Bourg N; Fecchio C; Sandona D; Marsolier J; Richard I
    PLoS One; 2018; 13(1):e0191274. PubMed ID: 29360879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenylhydrazones as Correctors of a Mutant Cystic Fibrosis Transmembrane Conductance Regulator.
    Nieddu E; Pollarolo B; Mazzei MT; Anzaldi M; Schenone S; Pedemonte N; Galietta LJ; Mazzei M
    Arch Pharm (Weinheim); 2016 Feb; 349(2):112-23. PubMed ID: 26701662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correctors modify the bicarbonate permeability of F508del-CFTR.
    Fiore M; Picco C; Moran O
    Sci Rep; 2020 May; 10(1):8440. PubMed ID: 32439937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal correction of distinct CFTR folding mutants in rectal cystic fibrosis organoids.
    Dekkers JF; Gogorza Gondra RA; Kruisselbrink E; Vonk AM; Janssens HM; de Winter-de Groot KM; van der Ent CK; Beekman JM
    Eur Respir J; 2016 Aug; 48(2):451-8. PubMed ID: 27103391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A synonymous codon change alters the drug sensitivity of ΔF508 cystic fibrosis transmembrane conductance regulator.
    Bali V; Lazrak A; Guroji P; Fu L; Matalon S; Bebok Z
    FASEB J; 2016 Jan; 30(1):201-13. PubMed ID: 26336913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.