BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32155794)

  • 21. Biofunctionalization of Titanium Substrates Using Nanoscale Polymer Brushes with Cell Adhesion Peptides.
    Rosenthal A; Mantz A; Nguyen A; Bittrich E; Schubert E; Schubert M; Stamm M; Pannier AK; Uhlmann P
    J Phys Chem B; 2018 Jun; 122(25):6543-6550. PubMed ID: 29878775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor.
    Lee J; Jang J; Choi B; Yoon J; Kim JY; Choi YK; Kim DM; Kim DH; Choi SJ
    Sci Rep; 2015 Jul; 5():12286. PubMed ID: 26197105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design, synthesis and application of a new class of stimuli-responsive separation materials.
    Sepehrifar R; Boysen RI; Danylec B; Yang Y; Saito K; Hearn MT
    Anal Chim Acta; 2017 Apr; 963():153-163. PubMed ID: 28335969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics study of wetting behavior of grafted thermo-responsive PNIPAAm brushes.
    Bhandary D; Benková Z; Cordeiro MN; Singh JK
    Soft Matter; 2016 Mar; 12(12):3093-102. PubMed ID: 26898416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biologically sensitive field-effect transistors: from ISFETs to NanoFETs.
    Pachauri V; Ingebrandt S
    Essays Biochem; 2016 Jun; 60(1):81-90. PubMed ID: 27365038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues.
    Duan X; Fu TM; Liu J; Lieber CM
    Nano Today; 2013 Aug; 8(4):351-373. PubMed ID: 24073014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances in nanowire transistors for biological analysis and cellular investigation.
    Li BR; Chen CC; Kumar UR; Chen YT
    Analyst; 2014 Apr; 139(7):1589-608. PubMed ID: 24505596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors.
    Lu N; Gao A; Dai P; Li T; Wang Y; Gao X; Song S; Fan C; Wang Y
    Methods; 2013 Oct; 63(3):212-8. PubMed ID: 23886908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A CMOS-compatible poly-Si nanowire device with hybrid sensor/memory characteristics for System-on-Chip applications.
    Chen MC; Chen HY; Lin CY; Chien CH; Hsieh TF; Horng JT; Qiu JT; Huang CC; Ho CH; Yang FL
    Sensors (Basel); 2012; 12(4):3952-63. PubMed ID: 22666012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen.
    Presnova G; Presnov D; Krupenin V; Grigorenko V; Trifonov A; Andreeva I; Ignatenko O; Egorov A; Rubtsova M
    Biosens Bioelectron; 2017 Feb; 88():283-289. PubMed ID: 27567265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive Understanding of Silicon-Nanowire Field-Effect Transistor Impedimetric Readout for Biomolecular Sensing.
    Bhattacharjee A; Nguyen TC; Pachauri V; Ingebrandt S; Vu XT
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33396324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple Schottky Barrier-Limited Field-Effect Transistors on a Single Silicon Nanowire with an Intrinsic Doping Gradient.
    Barreda JL; Keiper TD; Zhang M; Xiong P
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):12046-12053. PubMed ID: 28274114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanochemical Degrafting of a Surface-Tethered Poly(acrylic acid) Brush Promoted Etching of Its Underlying Silicon Substrate.
    Li Y; Lin Y; Dai Y; Ko Y; Genzer J
    Langmuir; 2019 Oct; 35(42):13693-13699. PubMed ID: 31565947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparing solution-gate and bottom-gate nanowire field-effect transistors on pH sensing with different salt concentrations and surface modifications.
    Hu WP; Yang YQ; Lee CH; Vu CA; Chen WY
    Talanta; 2024 May; 271():125731. PubMed ID: 38309116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Upper critical solution temperature thermo-responsive polymer brushes and a mechanism for controlled cell attachment.
    Xue X; Thiagarajan L; Braim S; Saunders BR; Shakesheff KM; Alexander C
    J Mater Chem B; 2017 Jul; 5(25):4926-4933. PubMed ID: 32264008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced Gas Sensing Properties of Graphene Transistor by Reduced Doping with Hydrophobic Polymer Brush as a Surface Modification Layer.
    Kim S; Kwak DH; Choi I; Hwang J; Kwon B; Lee E; Ye J; Lim H; Cho K; Chung HJ; Lee WH
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55493-55500. PubMed ID: 33233877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poly(acrylic acid)-grafted poly(N-isopropyl acrylamide) networks: preparation, characterization and hydrogel behavior.
    Yu R; Zheng S
    J Biomater Sci Polym Ed; 2011; 22(17):2305-24. PubMed ID: 21092421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel poly-silicon nanowire field effect transistor for biosensing application.
    Hsiao CY; Lin CH; Hung CH; Su CJ; Lo YR; Lee CC; Lin HC; Ko FH; Huang TY; Yang YS
    Biosens Bioelectron; 2009 Jan; 24(5):1223-9. PubMed ID: 18760914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and Phase Transition of Poly(N-isopropylacrylamide)-Based Thermo-Sensitive Cyclic Brush Polymer.
    Tu X; Meng C; Liu Z; Sun L; Zhang X; Zhang M; Sun M; Ma L; Liu M; Wei H
    Polymers (Basel); 2017 Jul; 9(7):. PubMed ID: 30970979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Batch binding studies with thermo-responsive polymer grafted sepharose 6 fast flow sorbents under different temperature and protein loading conditions.
    Tan S; Campi EM; Boysen RI; Saito K; Hearn MTW
    J Chromatogr A; 2020 Aug; 1625():461298. PubMed ID: 32709341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.