BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32155815)

  • 21. Experimental Evaluation of Shrinkage, Creep and Prestress Losses in Lightweight Aggregate Concrete with Sintered Fly Ash.
    Szydłowski RS; Łabuzek B
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Aggregate Size on Strength Characteristics of High Strength Lightweight Concrete.
    Wei H; Liu Y; Wu T; Liu X
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance Degradation and Microscopic Analysis of Lightweight Aggregate Concrete after Exposure to High Temperature.
    Yao W; Pang J; Liu Y
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32231140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physical and Mechanical Properties of a Bulk Lightweight Concrete with Expanded Polystyrene (EPS) Beads and Soft Marine Clay.
    Wang J; Hu B; Soon JH
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31121830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Moisture Condition of Structural Lightweight Concretes on Specified Values of Static and Dynamic Modulus of Elasticity.
    Domagała L; Sieja K
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Corrosion Resistance of Reinforced Lightweight Aggregate Concrete in Strong Brine Environments.
    Chen HJ; Chen YC; Tang CW; Lin XF
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compressive Properties of Basalt Fibers and Polypropylene Fiber-Reinforced Lightweight Concrete.
    Xu S; Yan K; Jiang T; Wang Y; Shi S; Li W; Zhao Y; Sun K; Yu J; Wu X
    ACS Omega; 2024 Jun; 9(25):26973-26982. PubMed ID: 38947776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Cementitious Materials on the Engineering Properties of Lightweight Aggregate Mortars Containing Recycled Water.
    Lee JI; Bae SH; Kim JH; Choi SJ
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental and Numerical Investigation of Mechanical Properties of Lightweight Concretes (LWCs) with Various Aggregates.
    Kurpińska M; Ferenc T
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32781762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flexural Behaviour and Internal Forces Redistribution in LWAC Double-Span Beams.
    Kołodziejczyk E; Waśniewski T
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of Pretreatment Methods on Compressive Performance Improvement and Failure Mechanism Analysis of Recycled Aggregate Concrete.
    Lv D; Huang K; Wang W
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compressive strength prediction of high-strength oil palm shell lightweight aggregate concrete using machine learning methods.
    Ghanbari S; Shahmansouri AA; Akbarzadeh Bengar H; Jafari A
    Environ Sci Pollut Res Int; 2023 Jan; 30(1):1096-1115. PubMed ID: 35909210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction Model for Mechanical Properties of Lightweight Aggregate Concrete Using Artificial Neural Network.
    Yoon JY; Kim H; Lee YJ; Sim SH
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31443400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Properties of Alkali Activated Lightweight Aggregate Generated from Sidoarjo Volcanic Mud (Lusi), Fly Ash, and Municipal Solid Waste Incineration Bottom Ash.
    Risdanareni P; Villagran Zaccardi Y; Schollbach K; Wang J; De Belie N
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32498382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Geopolymer Concrete with Lightweight Fine Aggregate: Material Performance and Structural Application.
    Youssf O; Mills JE; Elchalakani M; Alanazi F; Yosri AM
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks.
    Kurpinska M; Kułak L
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31234516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst.
    Gurdián H; García-Alcocel E; Baeza-Brotons F; Garcés P; Zornoza E
    Materials (Basel); 2014 Apr; 7(4):3176-3197. PubMed ID: 28788613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Sustainable Alternative for Green Structural Lightweight Concrete: Performance Evaluation.
    Alqahtani FK
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500119
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental study on the compressive strength, damping and interfacial transition zone properties of modified recycled aggregate concrete.
    Lei B; Liu H; Yao Z; Tang Z
    R Soc Open Sci; 2019 Dec; 6(12):190813. PubMed ID: 31903200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Thermal Properties of Aggregates on the Mechanical Properties of High Strength Concrete under Loading and High Temperature Conditions.
    Lee T; Jeong K; Choi H
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.