BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

673 related articles for article (PubMed ID: 32155822)

  • 1. Structure and Aggregation Mechanisms in Amyloids.
    Almeida ZL; Brito RMM
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32155822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryo-EM reveals the steric zipper structure of a light chain-derived amyloid fibril.
    Schmidt A; Annamalai K; Schmidt M; Grigorieff N; Fändrich M
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6200-5. PubMed ID: 27185936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathways of amyloid fibril formation and protein aggregation.
    Tavili E; Aziziyan F; Dabirmanesh B
    Prog Mol Biol Transl Sci; 2024; 206():11-54. PubMed ID: 38811078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological features and types of aggregated structures.
    Agha MM; Uversky VN
    Prog Mol Biol Transl Sci; 2024; 206():85-109. PubMed ID: 38811090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformation-dependent scFv antibodies specifically recognize the oligomers assembled from various amyloids and show colocalization of amyloid fibrils with oligomers in patients with amyloidoses.
    Zhang X; Sun XX; Xue D; Liu DG; Hu XY; Zhao M; Yang SG; Yang Y; Xia YJ; Wang Y; Liu RT
    Biochim Biophys Acta; 2011 Dec; 1814(12):1703-12. PubMed ID: 21979582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural, morphological, and functional diversity of amyloid oligomers.
    Breydo L; Uversky VN
    FEBS Lett; 2015 Sep; 589(19 Pt A):2640-8. PubMed ID: 26188543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new structural model of Alzheimer's Aβ42 fibrils based on electron paramagnetic resonance data and Rosetta modeling.
    Gu L; Tran J; Jiang L; Guo Z
    J Struct Biol; 2016 Apr; 194(1):61-7. PubMed ID: 26827680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a molecular theory of early and late events in monomer to amyloid fibril formation.
    Straub JE; Thirumalai D
    Annu Rev Phys Chem; 2011; 62():437-63. PubMed ID: 21219143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into amyloid-like aggregation of H2 region of the C-terminal domain of nucleophosmin.
    Russo A; Diaferia C; La Manna S; Giannini C; Sibillano T; Accardo A; Morelli G; Novellino E; Marasco D
    Biochim Biophys Acta Proteins Proteom; 2017 Feb; 1865(2):176-185. PubMed ID: 27865970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpreting the aggregation kinetics of amyloid peptides.
    Pellarin R; Caflisch A
    J Mol Biol; 2006 Jul; 360(4):882-92. PubMed ID: 16797587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Zn(II) binding as a key feature in the formation of amyloid fibrils by Aβ11-28.
    Alies B; Solari PL; Hureau C; Faller P
    Inorg Chem; 2012 Jan; 51(1):701-8. PubMed ID: 22148916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A minimal conformational switching-dependent model for amyloid self-assembly.
    Ranganathan S; Ghosh D; Maji SK; Padinhateeri R
    Sci Rep; 2016 Feb; 6():21103. PubMed ID: 26883720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Camelid single-domain antibody fragments: Uses and prospects to investigate protein misfolding and aggregation, and to treat diseases associated with these phenomena.
    Pain C; Dumont J; Dumoulin M
    Biochimie; 2015 Apr; 111():82-106. PubMed ID: 25656912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures for amyloid fibrils.
    Makin OS; Serpell LC
    FEBS J; 2005 Dec; 272(23):5950-61. PubMed ID: 16302960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters.
    Matsuzaki K
    Acc Chem Res; 2014 Aug; 47(8):2397-404. PubMed ID: 25029558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis.
    Chong SH; Ham S
    Acc Chem Res; 2015 Apr; 48(4):956-65. PubMed ID: 25844814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates.
    Khurana R; Gillespie JR; Talapatra A; Minert LJ; Ionescu-Zanetti C; Millett I; Fink AL
    Biochemistry; 2001 Mar; 40(12):3525-35. PubMed ID: 11297418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.