These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 32155828)
1. Pressure-Sensitive Insoles for Real-Time Gait-Related Applications. Martini E; Fiumalbi T; Dell'Agnello F; Ivanić Z; Munih M; Vitiello N; Crea S Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155828 [TBL] [Abstract][Full Text] [Related]
2. Assessment of Sensorized Insoles in Balance and Gait in Individuals With Parkinson's Disease. Pergolini A; Bowman T; Lencioni T; Marzegan A; Meloni M; Carrozza MC; Trigili E; Vitiello N; Cattaneo D; Crea S IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1445-1454. PubMed ID: 38526883 [TBL] [Abstract][Full Text] [Related]
3. A Systematic Approach to the Design and Characterization of A Smart Insole for Detecting Vertical Ground Reaction Force (vGRF) in Gait Analysis. Tahir AM; Chowdhury MEH; Khandakar A; Al-Hamouz S; Abdalla M; Awadallah S; Reaz MBI; Al-Emadi N Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32053914 [TBL] [Abstract][Full Text] [Related]
4. The generation of centripetal force when walking in a circle: insight from the distribution of ground reaction forces recorded by plantar insoles. Turcato AM; Godi M; Giordano A; Schieppati M; Nardone A J Neuroeng Rehabil; 2015 Jan; 12(1):4. PubMed ID: 25576354 [TBL] [Abstract][Full Text] [Related]
5. A Multimodal Sensory Apparatus for Robotic Prosthetic Feet Combining Optoelectronic Pressure Transducers and IMU. Fiumalbi T; Martini E; Papapicco V; Dell'Agnello F; Mazzarini A; Baldoni A; Gruppioni E; Crea S; Vitiello N Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270877 [TBL] [Abstract][Full Text] [Related]
6. Digital wearable insole-based identification of knee arthropathies and gait signatures using machine learning. Wipperman MF; Lin AZ; Gayvert KM; Lahner B; Somersan-Karakaya S; Wu X; Im J; Lee M; Koyani B; Setliff I; Thakur M; Duan D; Breazna A; Wang F; Lim WK; Halasz G; Urbanek J; Patel Y; Atwal GS; Hamilton JD; Stuart S; Levy O; Avbersek A; Alaj R; Hamon SC; Harari O Elife; 2024 Apr; 13():. PubMed ID: 38686919 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137 [TBL] [Abstract][Full Text] [Related]
9. Prediction of ground reaction forces in level and incline/decline walking from a multistage analysis of plantar pressure data. Wei F; Crechiolo A; Haut RC J Biomech; 2019 Feb; 84():46-51. PubMed ID: 30579578 [TBL] [Abstract][Full Text] [Related]
10. PI-Sole: A Low-Cost Solution for Gait Monitoring Using Off-The-Shelf Piezoelectric Sensors and IMU. Chandel V; Singhal S; Sharma V; Ahmed N; Ghose A Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3290-3296. PubMed ID: 31946586 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Different Pressure-Based Foot Contact Event Detection Algorithms across Different Slopes and Speeds. Blades S; Marriott H; Hundza S; Honert EC; Stellingwerff T; Klimstra M Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904942 [TBL] [Abstract][Full Text] [Related]
12. Characteristic Changes of the Stance-Phase Plantar Pressure Curve When Walking Uphill and Downhill: Cross-Sectional Study. Wolff C; Steinheimer P; Warmerdam E; Dahmen T; Slusallek P; Schlinkmann C; Chen F; Orth M; Pohlemann T; Ganse B J Med Internet Res; 2024 May; 26():e44948. PubMed ID: 38718385 [TBL] [Abstract][Full Text] [Related]
14. Foot centre of pressure and ground reaction force during quadriceps resistance exercises; a comparison between force plates and a pressure insole system. Jönsson M; Munkhammar T; Norrbrand L; Berg HE J Biomech; 2019 Apr; 87():206-210. PubMed ID: 30905404 [TBL] [Abstract][Full Text] [Related]
15. Development of an IMU-based foot-ground contact detection (FGCD) algorithm. Kim M; Lee D Ergonomics; 2017 Mar; 60(3):384-403. PubMed ID: 27068742 [TBL] [Abstract][Full Text] [Related]
16. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running. Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885 [TBL] [Abstract][Full Text] [Related]
17. Neuromuscular response to the stimulation of plantar cutaneous during walking at different speeds. Palazzo F; Lamouchideli N; Caronti A; Tufi F; Padua E; Annino G Gait Posture; 2022 Jun; 95():84-92. PubMed ID: 35462053 [TBL] [Abstract][Full Text] [Related]
18. Smart Shoe-Assisted Evaluation of Using a Single Trunk/Pocket-Worn Accelerometer to Detect Gait Phases. Avvenuti M; Carbonaro N; Cimino MGCA; Cola G; Tognetti A; Vaglini G Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30405020 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database. Khandelwal S; Wickström N Gait Posture; 2017 Jan; 51():84-90. PubMed ID: 27736735 [TBL] [Abstract][Full Text] [Related]
20. In-shoe center of pressure: indirect force plate vs. direct insole measurement. Debbi EM; Wolf A; Goryachev Y; Yizhar Z; Luger E; Debi R; Haim A Foot (Edinb); 2012 Dec; 22(4):269-75. PubMed ID: 22938890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]