These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32155862)

  • 1. High-Throughput White Blood Cell (Leukocyte) Enrichment from Whole Blood Using Hydrodynamic and Inertial Forces.
    Lombodorj B; Tseng HC; Chang HY; Lu YW; Tumurpurev N; Lee CW; Ganbat B; Wu RG; Tseng FG
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32155862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells.
    Wei YJ; Wei X; Zhang X; Wu CX; Cai JY; Chen ML; Wang JH
    Talanta; 2024 Jun; 273():125884. PubMed ID: 38508128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral Microchannels with U-Shaped Cross-Section.
    Mehran A; Rostami P; Saidi MS; Firoozabadi B; Kashaninejad N
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.
    Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low-cost and high-throughput benchtop cell sorter for isolating white blood cells from whole blood.
    Lu X; Tayebi M; Ai Y
    Electrophoresis; 2021 Nov; 42(21-22):2281-2292. PubMed ID: 34010478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review of Secondary Flow in Inertial Microfluidics.
    Zhao Q; Yuan D; Zhang J; Li W
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-Step Microfluidic Purification of White Blood Cells from Whole Blood for Immunophenotyping.
    Kim B; Kim KH; Chang Y; Shin S; Shin EC; Choi S
    Anal Chem; 2019 Oct; 91(20):13230-13236. PubMed ID: 31556985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures.
    Wu Z; Chen Y; Wang M; Chung AJ
    Lab Chip; 2016 Feb; 16(3):532-42. PubMed ID: 26725506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-tuneable isolation of cancer cells using stretchable inertial microfluidics.
    Fallahi H; Yadav S; Phan HP; Ta H; Zhang J; Nguyen NT
    Lab Chip; 2021 May; 21(10):2008-2018. PubMed ID: 34008666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.
    Lee MG; Shin JH; Bae CY; Choi S; Park JK
    Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micropump integrated white blood cell separation platform for detection of chronic granulomatous disease.
    Mane S; Behera A; Hemadri V; Bhand S; Tripathi S
    Mikrochim Acta; 2024 May; 191(5):295. PubMed ID: 38700804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial microfluidic cube for automatic and fast extraction of white blood cells from whole blood.
    Zhu S; Wu D; Han Y; Wang C; Xiang N; Ni Z
    Lab Chip; 2020 Jan; 20(2):244-252. PubMed ID: 31833515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Isolation of Circulating Tumor Cells Using Cascaded Inertial Focusing Microfluidic Channel.
    Abdulla A; Liu W; Gholamipour-Shirazi A; Sun J; Ding X
    Anal Chem; 2018 Apr; 90(7):4397-4405. PubMed ID: 29537252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels.
    Sun J; Liu C; Li M; Wang J; Xianyu Y; Hu G; Jiang X
    Biomicrofluidics; 2013; 7(1):11802. PubMed ID: 24396523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle focusing by 3D inertial microfluidics.
    Paiè P; Bragheri F; Di Carlo D; Osellame R
    Microsyst Nanoeng; 2017; 3():17027. PubMed ID: 31057868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-Stacked Multistage Inertial Microfluidic Chip for High-Throughput Enrichment of Circulating Tumor Cells.
    Xu X; Huang X; Sun J; Chen J; Wu G; Yao Y; Zhou N; Wang S; Sun L
    Cyborg Bionic Syst; 2022; 2022():9829287. PubMed ID: 38645277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dean flow-coupled inertial focusing in curved channels.
    Ramachandraiah H; Ardabili S; Faridi AM; Gantelius J; Kowalewski JM; Mårtensson G; Russom A
    Biomicrofluidics; 2014 May; 8(3):034117. PubMed ID: 25379077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inertial Focusing of Microparticles in Curvilinear Microchannels.
    Özbey A; Karimzadehkhouei M; Akgönül S; Gozuacik D; Koşar A
    Sci Rep; 2016 Dec; 6():38809. PubMed ID: 27991494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.