These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 32155938)
1. Salinomycin-Loaded Iron Oxide Nanoparticles for Glioblastoma Therapy. Norouzi M; Yathindranath V; Thliveris JA; Miller DW Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32155938 [TBL] [Abstract][Full Text] [Related]
2. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles. Norouzi M; Yathindranath V; Thliveris JA; Kopec BM; Siahaan TJ; Miller DW Sci Rep; 2020 Jul; 10(1):11292. PubMed ID: 32647151 [TBL] [Abstract][Full Text] [Related]
3. Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood-brain barrier. Sun Z; Worden M; Wroczynskyj Y; Yathindranath V; van Lierop J; Hegmann T; Miller DW Int J Nanomedicine; 2014; 9():3013-26. PubMed ID: 25018630 [TBL] [Abstract][Full Text] [Related]
4. Salinomycin-loaded injectable thermosensitive hydrogels for glioblastoma therapy. Norouzi M; Firouzi J; Sodeifi N; Ebrahimi M; Miller DW Int J Pharm; 2021 Apr; 598():120316. PubMed ID: 33540001 [TBL] [Abstract][Full Text] [Related]
6. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models. Sun Z; Yathindranath V; Worden M; Thliveris JA; Chu S; Parkinson FE; Hegmann T; Miller DW Int J Nanomedicine; 2013; 8():961-70. PubMed ID: 23494517 [TBL] [Abstract][Full Text] [Related]
7. Salinomycin-loaded Nanofibers for Glioblastoma Therapy. Norouzi M; Abdali Z; Liu S; Miller DW Sci Rep; 2018 Jun; 8(1):9377. PubMed ID: 29925966 [TBL] [Abstract][Full Text] [Related]
8. Uptake and transcytosis of functionalized superparamagnetic iron oxide nanoparticles in an in vitro blood brain barrier model. Ivask A; Pilkington EH; Blin T; Käkinen A; Vija H; Visnapuu M; Quinn JF; Whittaker MR; Qiao R; Davis TP; Ke PC; Voelcker NH Biomater Sci; 2018 Jan; 6(2):314-323. PubMed ID: 29239410 [TBL] [Abstract][Full Text] [Related]
9. Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses. Luo C; Li Y; Yang L; Wang X; Long J; Liu J Arch Toxicol; 2015 Mar; 89(3):357-69. PubMed ID: 24847785 [TBL] [Abstract][Full Text] [Related]
10. Biodistribution of negatively charged iron oxide nanoparticles (IONPs) in mice and enhanced brain delivery using lysophosphatidic acid (LPA). Sun Z; Worden M; Thliveris JA; Hombach-Klonisch S; Klonisch T; van Lierop J; Hegmann T; Miller DW Nanomedicine; 2016 Oct; 12(7):1775-1784. PubMed ID: 27125435 [TBL] [Abstract][Full Text] [Related]
11. Programmed near-infrared light-responsive drug delivery system for combined magnetic tumor-targeting magnetic resonance imaging and chemo-phototherapy. Feng Q; Zhang Y; Zhang W; Hao Y; Wang Y; Zhang H; Hou L; Zhang Z Acta Biomater; 2017 Feb; 49():402-413. PubMed ID: 27890732 [TBL] [Abstract][Full Text] [Related]
12. Drug/Dye-Loaded, Multifunctional PEG-Chitosan-Iron Oxide Nanocomposites for Methotraxate Synergistically Self-Targeted Cancer Therapy and Dual Model Imaging. Lin J; Li Y; Li Y; Wu H; Yu F; Zhou S; Xie L; Luo F; Lin C; Hou Z ACS Appl Mater Interfaces; 2015 Jun; 7(22):11908-20. PubMed ID: 25978458 [TBL] [Abstract][Full Text] [Related]
13. Polyethyleneimine-mediated synthesis of superparamagnetic iron oxide nanoparticles with enhanced sensitivity in T2 magnetic resonance imaging. Do MA; Yoon GJ; Yeum JH; Han M; Chang Y; Choi JH Colloids Surf B Biointerfaces; 2014 Oct; 122():752-759. PubMed ID: 25194592 [TBL] [Abstract][Full Text] [Related]
14. Comparing the Variants of Iron Oxide Nanoparticle-Mediated Delivery of miRNA34a for Efficiency in Silencing of PD-L1 Genes in Cancer Cells. Pandey R; Yang FS; Sivasankaran VP; Lo YL; Wu YT; Chang CY; Chiu CC; Liao ZX; Wang LF Pharmaceutics; 2023 Jan; 15(1):. PubMed ID: 36678844 [TBL] [Abstract][Full Text] [Related]
15. Formation and characterization of β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated Fe3O4 nanoparticles for loading and releasing 5-Fluorouracil drug. Prabha G; Raj V Biomed Pharmacother; 2016 May; 80():173-182. PubMed ID: 27133054 [TBL] [Abstract][Full Text] [Related]
16. PEG- Li Y; Lin R; Wang L; Huang J; Wu H; Cheng G; Zhou Z; MacDonald T; Yang L; Mao H J Mater Chem B; 2015 May; 3(17):3591-3603. PubMed ID: 26594360 [TBL] [Abstract][Full Text] [Related]
17. Papain grafted into the silica coated iron-based magnetic nanoparticles 'IONPs@SiO Nasiri R; Dabagh S; Meamar R; Idris A; Muhammad I; Irfan M; Rashidi Nodeh H Nanotechnology; 2020 May; 31(19):195603. PubMed ID: 31978907 [TBL] [Abstract][Full Text] [Related]
18. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings. Liu Y; Xia Q; Liu Y; Zhang S; Cheng F; Zhong Z; Wang L; Li H; Xiao K Nanotechnology; 2014 Oct; 25(42):425101. PubMed ID: 25274166 [TBL] [Abstract][Full Text] [Related]
19. GO-Functionalized Large Magnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability and Hyperthermia Performance. Sugumaran PJ; Liu XL; Herng TS; Peng E; Ding J ACS Appl Mater Interfaces; 2019 Jun; 11(25):22703-22713. PubMed ID: 31244027 [TBL] [Abstract][Full Text] [Related]
20. Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes. Petters C; Thiel K; Dringen R Nanotoxicology; 2016; 10(3):332-42. PubMed ID: 26287375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]