These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32156045)

  • 41. Multifunctional probe array for nano patterning and imaging.
    Wang X; Liu C
    Nano Lett; 2005 Oct; 5(10):1867-72. PubMed ID: 16218700
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of the tip-sample contact force on the nanostructure size fabricated by local oxidation nanolithography.
    Hu K; Wu S; Huang M; Hu X; Wang Q
    Ultramicroscopy; 2012 Apr; 115():7-13. PubMed ID: 22446199
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Advanced fabrication process for combined atomic force-scanning electrochemical microscopy (AFM-SECM) probes.
    Eifert A; Mizaikoff B; Kranz C
    Micron; 2015 Jan; 68():27-35. PubMed ID: 25259683
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging.
    Nellist MR; Chen Y; Mark A; Gödrich S; Stelling C; Jiang J; Poddar R; Li C; Kumar R; Papastavrou G; Retsch M; Brunschwig BS; Huang Z; Xiang C; Boettcher SW
    Nanotechnology; 2017 Mar; 28(9):095711. PubMed ID: 28139467
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.
    Killgore JP; Tung RC; Hurley DC
    Nanotechnology; 2014 Aug; 25(34):345701. PubMed ID: 25098183
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contact atomic force microscopy using piezoresistive cantilevers in load force modulation mode.
    Biczysko P; Dzierka A; Jóźwiak G; Rudek M; Gotszalk T; Janus P; Grabiec P; Rangelow IW
    Ultramicroscopy; 2018 Jan; 184(Pt A):199-208. PubMed ID: 28950210
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combined atomic force microscope-based topographical imaging and nanometer-scale resolved proximal probe thermal desorption/electrospray ionization-mass spectrometry.
    Ovchinnikova OS; Nikiforov MP; Bradshaw JA; Jesse S; Van Berkel GJ
    ACS Nano; 2011 Jul; 5(7):5526-31. PubMed ID: 21639403
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 3D Microscale Heat Transfer Model of the Thermal Properties of Wood-Metal Functional Composites Based on the Microstructure.
    Chai Y; Liang S; Zhou Y; Lin L; Fu F
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450845
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermomechanical formation and recovery of nanoindents in a shape memory polymer studied using a heated tip.
    Yang F; Wornyo E; Gall K; King WP
    Scanning; 2008; 30(2):197-202. PubMed ID: 17987641
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pico-Watt Scanning Thermal Microscopy for Thermal Energy Transport Investigation in Atomic Materials.
    Koo S; Park J; Kim K
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564188
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Scanning Thermal Microscopy of Ultrathin Films: Numerical Studies Regarding Cantilever Displacement, Thermal Contact Areas, Heat Fluxes, and Heat Distribution.
    Metzke C; Kühnel F; Weber J; Benstetter G
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669205
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Probe-based microscale measurement setup for the thermal diffusivity of soft materials.
    Ryu M; Akoshima M; Morikawa J
    Rev Sci Instrum; 2022 Apr; 93(4):044901. PubMed ID: 35489892
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Precise Control over Polymer Semiconducting Films by Tuning the Thermal Behavior of the Thin-Film State's Crystalline and Morphological Structures.
    Oh S; Cho H; Choi G; Ha J; Khan MRR; Lee HS
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40358-40365. PubMed ID: 31591879
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stabilizing nanometer scale tip-to-substrate gaps in scanning electrochemical microscopy using an isothermal chamber for thermal drift suppression.
    Kim J; Shen M; Nioradze N; Amemiya S
    Anal Chem; 2012 Apr; 84(8):3489-92. PubMed ID: 22462610
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of the bias voltage effect and the force effect during the nanoscale AFM electric lithography on the copper thin film surface.
    Yang Y; Lin J
    Scanning; 2016 Sep; 38(5):412-420. PubMed ID: 26599706
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Method for characterizing nanoscale wear of atomic force microscope tips.
    Liu J; Notbohm JK; Carpick RW; Turner KT
    ACS Nano; 2010 Jul; 4(7):3763-72. PubMed ID: 20575565
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantifying non-contact tip-sample thermal exchange parameters for accurate scanning thermal microscopy with heated microprobes.
    Wilson AA; Borca-Tasciuc T
    Rev Sci Instrum; 2017 Jul; 88(7):074903. PubMed ID: 28764517
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polymer Patterning with Self-Heating Atomic Force Microscope Probes.
    Ciftci HT; Van LP; Koopmans B; Kurnosikov O
    J Phys Chem A; 2019 Sep; 123(37):8036-8042. PubMed ID: 31411884
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An evaluation of local thermal analysis of polymers on the sub-micrometer scale using heated scanning probe microscopy cantilevers.
    Fischinger TJ; Laher M; Hild S
    J Phys Chem B; 2014 May; 118(20):5570-6. PubMed ID: 24654598
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Angled long tip to tuning fork probes for atomic force microscopy in various environments.
    Higuchi S; Kuramochi H; Kubo O; Masuda S; Shingaya Y; Aono M; Nakayama T
    Rev Sci Instrum; 2011 Apr; 82(4):043701. PubMed ID: 21529007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.