BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32156076)

  • 1. A Protein in the Yeast
    Farooqi K; Ghazvini M; Pride LD; Mazzella L; White D; Pramanik A; Bargonetti J; Moore CW
    Biomolecules; 2020 Mar; 10(3):. PubMed ID: 32156076
    [No Abstract]   [Full Text] [Related]  

  • 2. Coactivator requirements for p53-dependent transcription in the yeast Saccharomyces cerevisiae.
    Yousef AF; Xu GW; Mendez M; Brandl CJ; Mymryk JS
    Int J Cancer; 2008 Feb; 122(4):942-6. PubMed ID: 17957787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reporter gene regulation in Saccharomyces cerevisiae by the human p53 tumor suppressor protein.
    Bitter GA; Schaeffer TN; Ellison AR
    J Mol Microbiol Biotechnol; 2002 Nov; 4(6):539-50. PubMed ID: 12432954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A yeast two-hybrid system for the screening and characterization of small-molecule inhibitors of protein-protein interactions identifies a novel putative Mdm2-binding site in p53.
    Wong JH; Alfatah M; Sin MF; Sim HM; Verma CS; Lane DP; Arumugam P
    BMC Biol; 2017 Nov; 15(1):108. PubMed ID: 29121928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential transactivation by the p53 transcription factor is highly dependent on p53 level and promoter target sequence.
    Inga A; Storici F; Darden TA; Resnick MA
    Mol Cell Biol; 2002 Dec; 22(24):8612-25. PubMed ID: 12446780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p202, an interferon-inducible modulator of transcription, inhibits transcriptional activation by the p53 tumor suppressor protein, and a segment from the p53-binding protein 1 that binds to p202 overcomes this inhibition.
    Datta B; Li B; Choubey D; Nallur G; Lengyel P
    J Biol Chem; 1996 Nov; 271(44):27544-55. PubMed ID: 8910340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genetic approach to mapping the p53 binding site in the MDM2 protein.
    Freedman DA; Epstein CB; Roth JC; Levine AJ
    Mol Med; 1997 Apr; 3(4):248-59. PubMed ID: 9131587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of p53 transactivation specificity through the lens of a yeast-based functional assay.
    Lion M; Raimondi I; Donati S; Jousson O; Ciribilli Y; Inga A
    PLoS One; 2015; 10(2):e0116177. PubMed ID: 25668429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted activation of transcription in vivo through hairpin-triplex forming oligonucleotide in Saccharomyces cerevisiae.
    Ghosh MK; Katyal A; Chandra R; Brahmachari V
    Mol Cell Biochem; 2005 Oct; 278(1-2):147-55. PubMed ID: 16180100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human tumor-derived p53 proteins exhibit binding site selectivity and temperature sensitivity for transactivation in a yeast-based assay.
    Di Como CJ; Prives C
    Oncogene; 1998 May; 16(19):2527-39. PubMed ID: 9627118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studying p53 family proteins in yeast: induction of autophagic cell death and modulation by interactors and small molecules.
    Leão M; Gomes S; Bessa C; Soares J; Raimundo L; Monti P; Fronza G; Pereira C; Saraiva L
    Exp Cell Res; 2015 Jan; 330(1):164-77. PubMed ID: 25265062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the core promoter regions of the Saccharomyces cerevisiae RPS3 gene.
    Joo YJ; Kim JH; Baek JH; Seong KM; Lee JY; Kim J
    Biochim Biophys Acta; 2009; 1789(11-12):741-50. PubMed ID: 19853675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CTBP1/RBP1, a Saccharomyces cerevisiae protein which binds to T-rich single-stranded DNA containing the 11-bp core sequence of autonomously replicating sequence, is a poly(deoxypyrimidine)-binding protein.
    Ikeda M; Arai K; Masai H
    Eur J Biochem; 1996 May; 238(1):38-47. PubMed ID: 8665950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the sequence specificity of the Saccharomyces cerevisiae DNA binding protein REB1p by selecting binding sites from random-sequence oligonucleotides.
    Liaw PC; Brandl CJ
    Yeast; 1994 Jun; 10(6):771-87. PubMed ID: 7975895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the human p11 promoter sequence.
    Huang X; Pawliczak R; Yao XL; Madara P; Alsaaty S; Shelhamer JH; Cowan MJ
    Gene; 2003 May; 310():133-42. PubMed ID: 12801640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical and functional interactions of neuronal growth suppressor necdin with p53.
    Taniura H; Matsumoto K; Yoshikawa K
    J Biol Chem; 1999 Jun; 274(23):16242-8. PubMed ID: 10347180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EBNA-2 upregulation of Epstein-Barr virus latency promoters and the cellular CD23 promoter utilizes a common targeting intermediate, CBF1.
    Ling PD; Hsieh JJ; Ruf IK; Rawlins DR; Hayward SD
    J Virol; 1994 Sep; 68(9):5375-83. PubMed ID: 8057421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p53 death signal is mainly mediated by Nuc1(EndoG) in the yeast Saccharomyces cerevisiae.
    Palermo V; Mangiapelo E; Piloto C; Pieri L; Muscolini M; Tuosto L; Mazzoni C
    FEMS Yeast Res; 2013 Nov; 13(7):682-8. PubMed ID: 23875998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 9aaTAD Transactivation Domains: From Gal4 to p53.
    Piskacek M; Havelka M; Rezacova M; Knight A
    PLoS One; 2016; 11(9):e0162842. PubMed ID: 27618436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding to the naturally occurring double p53 binding site of the Mdm2 promoter alleviates the requirement for p53 C-terminal activation.
    Kaku S; Iwahashi Y; Kuraishi A; Albor A; Yamagishi T; Nakaike S; Kulesz-Martin M
    Nucleic Acids Res; 2001 May; 29(9):1989-93. PubMed ID: 11328884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.