BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 32156196)

  • 1. Retraction to: Delayed Administration of Tat-HA-NR2B9c Promotes Recovery After Stroke in Rats.
    Stroke; 2020 Apr; 51(4):e72. PubMed ID: 32156196
    [No Abstract]   [Full Text] [Related]  

  • 2. Delayed Administration of Tat-HA-NR2B9c Promotes Recovery After Stroke in Rats.
    Zhou HH; Tang Y; Zhang XY; Luo CX; Gao LY; Wu HY; Chang L; Zhu DY
    Stroke; 2015 May; 46(5):1352-8. PubMed ID: 25851770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response to Letter Regarding Article, "Delayed Administration of Tat-HA-NR2B9c Promotes Recovery After Stroke in Rats".
    Zhou HH; Zhu DY
    Stroke; 2015 Aug; 46(8):e193. PubMed ID: 26111894
    [No Abstract]   [Full Text] [Related]  

  • 4. Letter by Zuo and Xu Regarding Article, "Delayed Administration of Tat-HA-NR2B9c Promotes Recovery After Stroke in Rats".
    Zuo X; Xu E
    Stroke; 2015 Aug; 46(8):e192. PubMed ID: 26111889
    [No Abstract]   [Full Text] [Related]  

  • 5. Cloning, expression, and purification of a recombinant Tat-HA-NR2B9c peptide.
    Zhou HH; Zhang AX; Zhang Y; Zhu DY
    Protein Expr Purif; 2012 Oct; 85(2):239-45. PubMed ID: 22944204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tat-HA-NR2B9c attenuate oxaliplatin-induced neuropathic pain.
    Zhou HH; Zhang L; Zhang HX; Xu BR; Zhang JP; Zhou YJ; Qian XP; Ge WH
    Exp Neurol; 2019 Jan; 311():80-87. PubMed ID: 30253135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted delivery of intranasally administered nanoparticles-mediated neuroprotective peptide NR2B9c to brain and neuron for treatment of ischemic stroke.
    Li R; Huang Y; Chen L; Zhou H; Zhang M; Chang L; Shen H; Zhou M; Su P; Zhu D
    Nanomedicine; 2019 Jun; 18():380-390. PubMed ID: 30428334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted delivery of polypeptide nanoparticle for treatment of traumatic brain injury.
    Wu P; Zhao H; Gou X; Wu X; Zhang S; Deng G; Chen Q
    Int J Nanomedicine; 2019; 14():4059-4069. PubMed ID: 31213815
    [No Abstract]   [Full Text] [Related]  

  • 9. Tat-NR2B9c prevents excitotoxic neuronal superoxide production.
    Chen Y; Brennan-Minnella AM; Sheth S; El-Benna J; Swanson RA
    J Cereb Blood Flow Metab; 2015 May; 35(5):739-42. PubMed ID: 25669908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroprotection by freezing ischemic penumbra evolution without cerebral blood flow augmentation with a postsynaptic density-95 protein inhibitor.
    Bråtane BT; Cui H; Cook DJ; Bouley J; Tymianski M; Fisher M
    Stroke; 2011 Nov; 42(11):3265-70. PubMed ID: 21903963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed 2-h post-stroke administration of R18 and NA-1 (TAT-NR2B9c) peptides after permanent and/or transient middle cerebral artery occlusion in the rat.
    Milani D; Cross JL; Anderton RS; Blacker DJ; Knuckey NW; Meloni BP
    Brain Res Bull; 2017 Oct; 135():62-68. PubMed ID: 28964774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A translational paradigm for the preclinical evaluation of the stroke neuroprotectant Tat-NR2B9c in gyrencephalic nonhuman primates.
    Cook DJ; Teves L; Tymianski M
    Sci Transl Med; 2012 Oct; 4(154):154ra133. PubMed ID: 23035045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroprotection after status epilepticus by targeting protein interactions with postsynaptic density protein 95.
    Dykstra CM; Ratnam M; Gurd JW
    J Neuropathol Exp Neurol; 2009 Jul; 68(7):823-31. PubMed ID: 19535989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors.
    Cui H; Hayashi A; Sun HS; Belmares MP; Cobey C; Phan T; Schweizer J; Salter MW; Wang YT; Tasker RA; Garman D; Rabinowitz J; Lu PS; Tymianski M
    J Neurosci; 2007 Sep; 27(37):9901-15. PubMed ID: 17855605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calmodulin kinase IV-dependent CREB activation is required for neuroprotection via NMDA receptor-PSD95 disruption.
    Bell KF; Bent RJ; Meese-Tamuri S; Ali A; Forder JP; Aarts MM
    J Neurochem; 2013 Jul; 126(2):274-87. PubMed ID: 23363435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibiting pro-death NMDA receptor signaling dependent on the NR2 PDZ ligand may not affect synaptic function or synaptic NMDA receptor signaling to gene expression.
    Martel MA; Soriano FX; Baxter P; Rickman C; Duncan R; Wyllie DJ; Hardingham GE
    Channels (Austin); 2009; 3(1):12-5. PubMed ID: 19221512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inhibition of Cdk5 activity after hypoxia/ischemia injury reduces infarct size and promotes functional recovery in neonatal rats.
    Tan X; Chen Y; Li J; Li X; Miao Z; Xin N; Zhu J; Ge W; Feng Y; Xu X
    Neuroscience; 2015 Apr; 290():552-60. PubMed ID: 25665755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TAT-PEP Enhanced Neurobehavioral Functional Recovery by Facilitating Axonal Regeneration and Corticospinal Tract Projection After Stroke.
    Deng B; Li L; Gou X; Xu H; Zhao Z; Wang Q; Xu L
    Mol Neurobiol; 2018 Jan; 55(1):652-667. PubMed ID: 27987133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TAT-NEP1-40 as a novel therapeutic candidate for axonal regeneration and functional recovery after stroke.
    Gou X; Wang Q; Yang Q; Xu L; Xiong L
    J Drug Target; 2011 Feb; 19(2):86-95. PubMed ID: 20367026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of an anti-stroke peptide: driving forces and kinetics in chemical degradation.
    Li R; Wang F; Chen L; Zhu S; Wu L; Jiang S; Xu Q; Zhu D
    Int J Pharm; 2014 Sep; 472(1-2):148-55. PubMed ID: 24929015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.