These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 32156198)
1. Dynamical analysis on a predator-prey model with stage structure and mutual interference. Zhang X; Huang G; Dong Y J Biol Dyn; 2020 Dec; 14(1):200-221. PubMed ID: 32156198 [TBL] [Abstract][Full Text] [Related]
2. Dynamical analysis of a delayed diffusive predator-prey model with schooling behaviour and Allee effect. Meng XY; Wang JG J Biol Dyn; 2020 Dec; 14(1):826-848. PubMed ID: 33225865 [TBL] [Abstract][Full Text] [Related]
3. Exploring the complexity and chaotic behavior in plankton-fish system with mutual interference and time delay. Ojha A; Thakur NK Biosystems; 2020 Dec; 198():104283. PubMed ID: 33157156 [TBL] [Abstract][Full Text] [Related]
4. Hopf bifurcation, stability switches and chaos in a prey-predator system with three stage structure and two time delays. Li SY Math Biosci Eng; 2019 Jul; 16(6):6934-6961. PubMed ID: 31698597 [TBL] [Abstract][Full Text] [Related]
5. Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species. Meng XY; Qin NN; Huo HF J Biol Dyn; 2018 Dec; 12(1):342-374. PubMed ID: 29616595 [TBL] [Abstract][Full Text] [Related]
6. Global hopf bifurcation on two-delays leslie-gower predator-prey system with a prey refuge. Liu Q; Lin Y; Cao J Comput Math Methods Med; 2014; 2014():619132. PubMed ID: 24803953 [TBL] [Abstract][Full Text] [Related]
7. Bifurcation of a delayed Gause predator-prey model with Michaelis-Menten type harvesting. Liu W; Jiang Y J Theor Biol; 2018 Feb; 438():116-132. PubMed ID: 29129548 [TBL] [Abstract][Full Text] [Related]
8. Bifurcation analysis in a singular Beddington-DeAngelis predator-prey model with two delays and nonlinear predator harvesting. Meng XY; Wu YQ Math Biosci Eng; 2019 Mar; 16(4):2668-2696. PubMed ID: 31137232 [TBL] [Abstract][Full Text] [Related]
9. Oscillations for a delayed predator-prey model with Hassell-Varley-type functional response. Xu C; Li P C R Biol; 2015 Apr; 338(4):227-40. PubMed ID: 25836016 [TBL] [Abstract][Full Text] [Related]
10. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Shen Z; Wei J Math Biosci Eng; 2018 Jun; 15(3):693-715. PubMed ID: 30380326 [TBL] [Abstract][Full Text] [Related]
11. Stability and Hopf bifurcation of an intraguild prey-predator fishery model with two delays and Michaelis-Menten type predator harvest. Hou M; Zhang T; Yuan S Math Biosci Eng; 2024 Apr; 21(4):5687-5711. PubMed ID: 38872554 [TBL] [Abstract][Full Text] [Related]
12. Stability and bifurcation of a delayed diffusive predator-prey system with food-limited and nonlinear harvesting. Sun GX; Dai BX Math Biosci Eng; 2020 May; 17(4):3520-3552. PubMed ID: 32987542 [TBL] [Abstract][Full Text] [Related]
13. Survival analysis of a stochastic predator-prey model with prey refuge and fear effect. Xia Y; Yuan S J Biol Dyn; 2020 Dec; 14(1):871-892. PubMed ID: 33269648 [TBL] [Abstract][Full Text] [Related]
14. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Chang X; Wei J Math Biosci Eng; 2013 Aug; 10(4):979-96. PubMed ID: 23906199 [TBL] [Abstract][Full Text] [Related]
15. Trade-off and chaotic dynamics of prey-predator system with two discrete delays. Bhargava M; Sajan ; Dubey B Chaos; 2023 May; 33(5):. PubMed ID: 37229637 [TBL] [Abstract][Full Text] [Related]
16. Hopf bifurcation and stability analysis of the Rosenzweig-MacArthur predator-prey model with stage-structure in prey. Beay LK; Suryanto A; Darti I; Trisilowati T Math Biosci Eng; 2020 Jun; 17(4):4080-4097. PubMed ID: 32987569 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components. Rao F; Castillo-Chavez C; Kang Y Math Biosci Eng; 2018 Dec; 15(6):1401-1423. PubMed ID: 30418791 [TBL] [Abstract][Full Text] [Related]
18. Stability and bifurcation analysis of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response. Wang S; Yu H Math Biosci Eng; 2021 Sep; 18(6):7877-7918. PubMed ID: 34814280 [TBL] [Abstract][Full Text] [Related]
19. Does mutual interference stabilize prey-predator model with Bazykin-Crowley-Martin trophic function? Tyutyunov Y; Sen D; Banerjee M Math Biosci; 2024 Jun; 372():109201. PubMed ID: 38636925 [TBL] [Abstract][Full Text] [Related]
20. Effects of additional food in a delayed predator-prey model. Sahoo B; Poria S Math Biosci; 2015 Mar; 261():62-73. PubMed ID: 25550287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]