These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32156378)

  • 1. Tetraconazole alters the methionine and ergosterol biosynthesis pathways in Saccharomyces yeasts promoting changes on volatile derived compounds.
    Sieiro-Sampedro T; Briz-Cid N; Pose-Juan E; Figueiredo-González M; González-Barreiro C; Simal-Gándara J; Cancho-Grande B; Rial-Otero R
    Food Res Int; 2020 Apr; 130():108930. PubMed ID: 32156378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of tetraconazole on the proteome profile of Saccharomyces cerevisiae Lalvin T73™ strain.
    Briz-Cid N; Pose-Juan E; Nicoletti M; Simal-Gándara J; Fasoli E; Rial-Otero R
    J Proteomics; 2020 Sep; 227():103915. PubMed ID: 32711165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of mepanipyrim and tetraconazole in Mencía wines on the biosynthesis of volatile compounds during the winemaking process.
    Sieiro-Sampedro T; Figueiredo-González M; González-Barreiro C; Simal-Gandara J; Cancho-Grande B; Rial-Otero R
    Food Chem; 2019 Dec; 300():125223. PubMed ID: 31362157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mepanipyrim residues on pasteurized red must influence the volatile derived compounds from Saccharomyces cerevisiae metabolism.
    Sieiro-Sampedro T; Pose-Juan E; Briz-Cid N; Figueiredo-González M; Torrado-Agrasar A; González-Barreiro C; Simal-Gandara J; Cancho-Grande B; Rial-Otero R
    Food Res Int; 2019 Dec; 126():108566. PubMed ID: 31732059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of new generation fungicides on Saccharomyces cerevisiae growth, grape must fermentation and aroma biosynthesis.
    Noguerol-Pato R; Torrado-Agrasar A; González-Barreiro C; Cancho-Grande B; Simal-Gándara J
    Food Chem; 2014 Mar; 146():234-41. PubMed ID: 24176337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysing the impact of the nature of the nitrogen source on the formation of volatile compounds to unravel the aroma metabolism of two non-Saccharomyces strains.
    Seguinot P; Bloem A; Brial P; Meudec E; Ortiz-Julien A; Camarasa C
    Int J Food Microbiol; 2020 Mar; 316():108441. PubMed ID: 31778839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation kinetics and safety evaluation of tetraconazole and difenoconazole residues in grape.
    Banerjee K; Oulkar DP; Patil SH; Dasgupta S; Adsule PG
    Pest Manag Sci; 2008 Mar; 64(3):283-9. PubMed ID: 18200613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation.
    Eder M; Sanchez I; Brice C; Camarasa C; Legras JL; Dequin S
    BMC Genomics; 2018 Mar; 19(1):166. PubMed ID: 29490607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the Effects of Different Unsaturated Fatty Acids on Fermentation Performance of
    Liu PT; Duan CQ; Yan GL
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30717212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines.
    Sun SY; Gong HS; Jiang XM; Zhao YP
    Food Microbiol; 2014 Dec; 44():15-23. PubMed ID: 25084640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of two antifungal commercial formulations on the metabolism of a commercial Saccharomyces cerevisiae strain and their repercussion on fermentation evolution and phenylalanine catabolism.
    Sieiro-Sampedro T; Alonso-Del-Real J; Briz-Cid N; Rial-Otero R; Querol A; Simal-Gandara J
    Food Microbiol; 2020 Dec; 92():103554. PubMed ID: 32950148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nitrogen source impacts major volatile compounds released by Saccharomyces cerevisiae during alcoholic fermentation.
    Barbosa C; Mendes-Faia A; Mendes-Ferreira A
    Int J Food Microbiol; 2012 Nov; 160(2):87-93. PubMed ID: 23177046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wine aroma response to different participation of selected Hanseniaspora uvarum in mixed fermentation with Saccharomyces cerevisiae.
    Hu K; Jin GJ; Xu YH; Tao YS
    Food Res Int; 2018 Jun; 108():119-127. PubMed ID: 29735040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the potential of Saccharomyces eubayanus as a parent for new interspecies hybrid strains in winemaking.
    Magalhães F; Krogerus K; Castillo S; Ortiz-Julien A; Dequin S; Gibson B
    FEMS Yeast Res; 2017 Aug; 17(5):. PubMed ID: 28810703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts.
    Sadoudi M; Tourdot-Maréchal R; Rousseaux S; Steyer D; Gallardo-Chacón JJ; Ballester J; Vichi S; Guérin-Schneider R; Caixach J; Alexandre H
    Food Microbiol; 2012 Dec; 32(2):243-53. PubMed ID: 22986187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of volatile compounds treated with selected non-Saccharomyces extracellular extract during Pinot noir winemaking in monsoon climate.
    Kong CL; Li AH; Jin GJ; Zhu XL; Tao YS
    Food Res Int; 2019 May; 119():177-186. PubMed ID: 30884647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wine aroma evolution throughout alcoholic fermentation sequentially inoculated with non- Saccharomyces/Saccharomyces yeasts.
    Escribano-Viana R; González-Arenzana L; Portu J; Garijo P; López-Alfaro I; López R; Santamaría P; Gutiérrez AR
    Food Res Int; 2018 Oct; 112():17-24. PubMed ID: 30131125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the volatile compound production of fermentations made from musts with increasing grape content.
    Keyzers RA; Boss PK
    J Agric Food Chem; 2010 Jan; 58(2):1153-64. PubMed ID: 20020683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The utilisation of nitrogenous compounds by commercial non-Saccharomyces yeasts associated with wine.
    Prior KJ; Bauer FF; Divol B
    Food Microbiol; 2019 Jun; 79():75-84. PubMed ID: 30621878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-fermentative supplementation of fatty acids alters the metabolic activity of wine yeasts.
    Pinu FR; Villas-Boas SG; Martin D
    Food Res Int; 2019 Jul; 121():835-844. PubMed ID: 31108815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.