These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 32157183)
1. Predicting pregnancy test results after embryo transfer by image feature extraction and analysis using machine learning. Chavez-Badiola A; Flores-Saiffe Farias A; Mendizabal-Ruiz G; Garcia-Sanchez R; Drakeley AJ; Garcia-Sandoval JP Sci Rep; 2020 Mar; 10(1):4394. PubMed ID: 32157183 [TBL] [Abstract][Full Text] [Related]
2. Objective way to support embryo transfer: a probabilistic decision. Gianaroli L; Magli MC; Gambardella L; Giusti A; Grugnetti C; Corani G Hum Reprod; 2013 May; 28(5):1210-20. PubMed ID: 23462389 [TBL] [Abstract][Full Text] [Related]
3. Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor. Liu L; Jiao Y; Li X; Ouyang Y; Shi D Comput Methods Programs Biomed; 2020 Nov; 196():105624. PubMed ID: 32623348 [TBL] [Abstract][Full Text] [Related]
4. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status. Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122 [TBL] [Abstract][Full Text] [Related]
5. Using feature optimization and LightGBM algorithm to predict the clinical pregnancy outcomes after Li L; Cui X; Yang J; Wu X; Zhao G Front Endocrinol (Lausanne); 2023; 14():1305473. PubMed ID: 38093967 [TBL] [Abstract][Full Text] [Related]
6. Detecting Brain Tumor using Machines Learning Techniques Based on Different Features Extracting Strategies. Hussain L; Saeed S; Awan IA; Idris A; Nadeem MSA; Chaudhry QU Curr Med Imaging Rev; 2019; 15(6):595-606. PubMed ID: 32008569 [TBL] [Abstract][Full Text] [Related]
7. Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms. Maniruzzaman M; Jahanur Rahman M; Ahammed B; Abedin MM; Suri HS; Biswas M; El-Baz A; Bangeas P; Tsoulfas G; Suri JS Comput Methods Programs Biomed; 2019 Jul; 176():173-193. PubMed ID: 31200905 [TBL] [Abstract][Full Text] [Related]
8. Comparative study of machine learning approaches integrated with genetic algorithm for IVF success prediction. Dehghan S; Rabiei R; Choobineh H; Maghooli K; Nazari M; Vahidi-Asl M PLoS One; 2024; 19(10):e0310829. PubMed ID: 39392832 [TBL] [Abstract][Full Text] [Related]
9. Application of Artificial Intelligence for Preoperative Diagnostic and Prognostic Prediction in Epithelial Ovarian Cancer Based on Blood Biomarkers. Kawakami E; Tabata J; Yanaihara N; Ishikawa T; Koseki K; Iida Y; Saito M; Komazaki H; Shapiro JS; Goto C; Akiyama Y; Saito R; Saito M; Takano H; Yamada K; Okamoto A Clin Cancer Res; 2019 May; 25(10):3006-3015. PubMed ID: 30979733 [TBL] [Abstract][Full Text] [Related]
10. Embryo development stage prediction algorithm for automated time lapse incubators. Dirvanauskas D; Maskeliunas R; Raudonis V; Damasevicius R Comput Methods Programs Biomed; 2019 Aug; 177():161-174. PubMed ID: 31319944 [TBL] [Abstract][Full Text] [Related]
11. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3. Petersen BM; Boel M; Montag M; Gardner DK Hum Reprod; 2016 Oct; 31(10):2231-44. PubMed ID: 27609980 [TBL] [Abstract][Full Text] [Related]
12. Enhancing the security of patients' portals and websites by detecting malicious web crawlers using machine learning techniques. Hosseini N; Fakhar F; Kiani B; Eslami S Int J Med Inform; 2019 Dec; 132():103976. PubMed ID: 31606554 [TBL] [Abstract][Full Text] [Related]
13. Involvement of Machine Learning for Breast Cancer Image Classification: A Survey. Nahid AA; Kong Y Comput Math Methods Med; 2017; 2017():3781951. PubMed ID: 29463985 [TBL] [Abstract][Full Text] [Related]
15. Maternal hCG concentrations in early IVF pregnancies: associations with number of cells in the Day 2 embryo and oocytes retrieved. Tanbo TG; Eskild A Hum Reprod; 2015 Dec; 30(12):2758-63. PubMed ID: 26508733 [TBL] [Abstract][Full Text] [Related]
16. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related]
17. Classification of cancer cells using computational analysis of dynamic morphology. Hasan MR; Hassan N; Khan R; Kim YT; Iqbal SM Comput Methods Programs Biomed; 2018 Mar; 156():105-112. PubMed ID: 29428061 [TBL] [Abstract][Full Text] [Related]
18. Computational prediction of implantation outcome after embryo transfer. Raef B; Maleki M; Ferdousi R Health Informatics J; 2020 Sep; 26(3):1810-1826. PubMed ID: 31826687 [TBL] [Abstract][Full Text] [Related]
19. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets. McAllister P; Zheng H; Bond R; Moorhead A Comput Biol Med; 2018 Apr; 95():217-233. PubMed ID: 29549733 [TBL] [Abstract][Full Text] [Related]
20. Predictive Modeling of Implantation Outcome in an In Vitro Fertilization Setting: An Application of Machine Learning Methods. Uyar A; Bener A; Ciray HN Med Decis Making; 2015 Aug; 35(6):714-25. PubMed ID: 24842951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]