These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 32157285)
41. Drought effects on volatile organic compound emissions from Scots pine stems. Rissanen K; Aalto J; Gessler A; Hölttä T; Rigling A; Schaub M; Bäck J Plant Cell Environ; 2022 Jan; 45(1):23-40. PubMed ID: 34723383 [TBL] [Abstract][Full Text] [Related]
42. Elevated CO2 and warming effects on grassland plant mortality are determined by the timing of rainfall. Hovenden MJ; Newton PCD; Porter M Ann Bot; 2017 May; 119(7):1225-1233. PubMed ID: 28334161 [TBL] [Abstract][Full Text] [Related]
43. Effects of soil water content and elevated CO Mochizuki T; Amagai T; Tani A Sci Total Environ; 2018 Sep; 634():900-908. PubMed ID: 29660884 [TBL] [Abstract][Full Text] [Related]
44. Response of plant functional traits to nitrogen enrichment under climate change: A meta-analysis. Guo X; Liu H; Ngosong C; Li B; Wang Q; Zhou W; Nie M Sci Total Environ; 2022 Aug; 834():155379. PubMed ID: 35460775 [TBL] [Abstract][Full Text] [Related]
46. Plant secondary metabolism in a fluctuating world: climate change perspectives. Sun Y; Fernie AR Trends Plant Sci; 2024 May; 29(5):560-571. PubMed ID: 38042677 [TBL] [Abstract][Full Text] [Related]
47. Shifting plant species composition in response to climate change stabilizes grassland primary production. Liu H; Mi Z; Lin L; Wang Y; Zhang Z; Zhang F; Wang H; Liu L; Zhu B; Cao G; Zhao X; Sanders NJ; Classen AT; Reich PB; He JS Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4051-4056. PubMed ID: 29666319 [TBL] [Abstract][Full Text] [Related]
48. Response of wheat restricted-tillering and vigorous growth traits to variables of climate change. Dias de Oliveira EA; Siddique KH; Bramley H; Stefanova K; Palta JA Glob Chang Biol; 2015 Feb; 21(2):857-73. PubMed ID: 25330325 [TBL] [Abstract][Full Text] [Related]
50. Long-term exposure to elevated CO2 enhances plant community stability by suppressing dominant plant species in a mixed-grass prairie. Zelikova TJ; Blumenthal DM; Williams DG; Souza L; LeCain DR; Morgan J; Pendall E Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15456-61. PubMed ID: 25313034 [TBL] [Abstract][Full Text] [Related]
51. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA). Seco R; Karl T; Guenther A; Hosman KP; Pallardy SG; Gu L; Geron C; Harley P; Kim S Glob Chang Biol; 2015 Oct; 21(10):3657-74. PubMed ID: 25980459 [TBL] [Abstract][Full Text] [Related]
52. Fire severity is more sensitive to low fuel moisture content on Calluna heathlands than on peat bogs. Grau-Andrés R; Davies GM; Gray A; Scott EM; Waldron S Sci Total Environ; 2018 Mar; 616-617():1261-1269. PubMed ID: 29111249 [TBL] [Abstract][Full Text] [Related]
53. Influence of increased nutrient availability on biogenic volatile organic compound (BVOC) emissions and leaf anatomy of subarctic dwarf shrubs under climate warming and increased cloudiness. Ndah F; Valolahti H; Schollert M; Michelsen A; Rinnan R; Kivimäenpää M Ann Bot; 2022 Mar; 129(4):443-455. PubMed ID: 35029638 [TBL] [Abstract][Full Text] [Related]
54. [Effects of drought stress, high temperature and elevated CO2 concentration on the growth of winter wheat]. Si FY; Qiao YZ; Jiang JW; Dong BD; Shi CH; Liu MY Ying Yong Sheng Tai Xue Bao; 2014 Sep; 25(9):2605-12. PubMed ID: 25757312 [TBL] [Abstract][Full Text] [Related]
55. Delineating the mechanisms of elevated CO Roy S; Mathur P Plant Cell Rep; 2021 Aug; 40(8):1345-1365. PubMed ID: 34169360 [TBL] [Abstract][Full Text] [Related]
56. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
57. The impact of ecological restoration on ecosystem services change modulated by drought and rising CO Huang B; Lu F; Wang X; Wu X; Zheng H; Su Y; Yuan Y; Ouyang Z Glob Chang Biol; 2023 Sep; 29(18):5304-5320. PubMed ID: 37376714 [TBL] [Abstract][Full Text] [Related]
58. Woody-plant ecosystems under climate change and air pollution-response consistencies across zonobiomes? Matyssek R; Kozovits AR; Wieser G; King J; Rennenberg H Tree Physiol; 2017 Jun; 37(6):706-732. PubMed ID: 28338970 [TBL] [Abstract][Full Text] [Related]
59. Effects on the function of Arctic ecosystems in the short- and long-term perspectives. Callaghan TV; Björn LO; Chernov Y; Chapin T; Christensen TR; Huntley B; Ims RA; Johansson M; Jolly D; Jonasson S; Matveyeva N; Panikov N; Oechel W; Shaver G Ambio; 2004 Nov; 33(7):448-58. PubMed ID: 15573572 [TBL] [Abstract][Full Text] [Related]
60. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses. Salazar-Parra C; Aranjuelo I; Pascual I; Erice G; Sanz-Sáez Á; Aguirreolea J; Sánchez-Díaz M; Irigoyen JJ; Araus JL; Morales F J Plant Physiol; 2015 Feb; 174():97-109. PubMed ID: 25462972 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]