These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32157299)

  • 1. Unique and highly specific cyanogenic glycoside localization in stigmatic cells and pollen in the genus Lomatia (Proteaceae).
    Ritmejerytė E; Boughton BA; Bayly MJ; Miller RE
    Ann Bot; 2020 Aug; 126(3):387-400. PubMed ID: 32157299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse organ-specific localisation of a chemical defence, cyanogenic glycosides, in flowers of eleven species of Proteaceae.
    Ritmejerytė E; Boughton BA; Bayly MJ; Miller RE
    PLoS One; 2023; 18(4):e0285007. PubMed ID: 37104509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rare cyanogen proteacin, and dhurrin, from foliage of Polyscias australiana, a tropical Araliaceae.
    Miller RE; Tuck KL
    Phytochemistry; 2013 Sep; 93():210-5. PubMed ID: 23566716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergent responses of above- and below-ground chemical defence to nitrogen and phosphorus supply in waratahs (Telopea speciosissima).
    Ritmejeryt E; Boughton BA; Bayly MJ; Miller RE
    Funct Plant Biol; 2019 Nov; 46(12):1134-1145. PubMed ID: 31615620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lotus japonicus flowers are defended by a cyanogenic β-glucosidase with highly restricted expression to essential reproductive organs.
    Lai D; Pičmanová M; Abou Hachem M; Motawia MS; Olsen CE; Møller BL; Rook F; Takos AM
    Plant Mol Biol; 2015 Sep; 89(1-2):21-34. PubMed ID: 26249044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency of cyanogenesis in tropical rainforests of far north Queensland, Australia.
    Miller RE; Jensen R; Woodrow IE
    Ann Bot; 2006 Jun; 97(6):1017-44. PubMed ID: 16520340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pollination and plant defence traits co-vary in Western Australian Hakeas.
    Hanley ME; Lamont BB; Armbruster WS
    New Phytol; 2009; 182(1):251-260. PubMed ID: 19076293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pollen adaptation to ant pollination: a case study from the Proteaceae.
    Delnevo N; van Etten EJ; Clemente N; Fogu L; Pavarani E; Byrne M; Stock WD
    Ann Bot; 2020 Aug; 126(3):377-386. PubMed ID: 32227077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species.
    Pičmanová M; Neilson EH; Motawia MS; Olsen CE; Agerbirk N; Gray CJ; Flitsch S; Meier S; Silvestro D; Jørgensen K; Sánchez-Pérez R; Møller BL; Bjarnholt N
    Biochem J; 2015 Aug; 469(3):375-89. PubMed ID: 26205491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel aspects of cyanogenesis in Eucalyptus camphora subsp. humeana.
    Neilson EH; Goodger JQD; Woodrow IE
    Funct Plant Biol; 2006 May; 33(5):487-496. PubMed ID: 32689255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flower Production, Headspace Volatiles, Pollen Nutrients, and Florivory in
    Eilers EJ; Kleine S; Eckert S; Waldherr S; Müller C
    Front Plant Sci; 2020; 11():611877. PubMed ID: 33552105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen availability and allocation in sorghum and its wild relatives: Divergent roles for cyanogenic glucosides.
    Myrans H; Vandegeer RK; Henry RJ; Gleadow RM
    J Plant Physiol; 2021; 258-259():153393. PubMed ID: 33667954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Horizontal orientation of zygomorphic flowers: significance for rain protection and pollen transfer.
    Yu YM; Li XX; Xie D; Wang H
    Plant Biol (Stuttg); 2021 Jan; 23(1):156-161. PubMed ID: 33073503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation for rodent pollination in Leucospermum arenarium (Proteaceae) despite rapid pollen loss during grooming.
    Johnson CM; Pauw A
    Ann Bot; 2014 May; 113(6):931-8. PubMed ID: 24607723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in pollen limitation and floral parasitism across a mating system transition in a Pacific coastal dune plant: evolutionary causes or ecological consequences?
    Dart S; Eckert CG
    Ann Bot; 2015 Feb; 115(2):315-26. PubMed ID: 25538114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging of Metabolites during Sorghum Germination.
    Montini L; Crocoll C; Gleadow RM; Motawia MS; Janfelt C; Bjarnholt N
    Plant Physiol; 2020 Jul; 183(3):925-942. PubMed ID: 32350122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The circadian clock controls temporal and spatial patterns of floral development in sunflower.
    Marshall CM; Thompson VL; Creux NM; Harmer SL
    Elife; 2023 Jan; 12():. PubMed ID: 36637156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanogenesis, a Plant Defence Strategy against Herbivores.
    Boter M; Diaz I
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pollinators exert selection on floral traits in a pollen-limited, narrowly endemic spring ephemeral.
    Koski MH
    Am J Bot; 2023 Jan; 110(1):e16101. PubMed ID: 36371765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary metabolites from nectar and pollen: a resource for ecological and evolutionary studies.
    Palmer-Young EC; Farrell IW; Adler LS; Milano NJ; Egan PA; Irwin RE; Stevenson PC
    Ecology; 2019 Apr; 100(4):e02621. PubMed ID: 30667044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.