These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2258 related articles for article (PubMed ID: 32157382)

  • 1. N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase.
    Eldeeb MA; Ragheb MA
    Curr Genet; 2020 Aug; 66(4):693-701. PubMed ID: 32157382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of PTEN-L in Modulating PINK1-Parkin-Mediated Mitophagy.
    Eldeeb MA; Esmaili M; Hassan M; Ragheb MA
    Neurotox Res; 2022 Aug; 40(4):1103-1114. PubMed ID: 35699891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons.
    Rakovic A; Shurkewitsch K; Seibler P; Grünewald A; Zanon A; Hagenah J; Krainc D; Klein C
    J Biol Chem; 2013 Jan; 288(4):2223-37. PubMed ID: 23212910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PTEN-L is a novel protein phosphatase for ubiquitin dephosphorylation to inhibit PINK1-Parkin-mediated mitophagy.
    Wang L; Cho YL; Tang Y; Wang J; Park JE; Wu Y; Wang C; Tong Y; Chawla R; Zhang J; Shi Y; Deng S; Lu G; Wu Y; Tan HW; Pawijit P; Lim GG; Chan HY; Zhang J; Fang L; Yu H; Liou YC; Karthik M; Bay BH; Lim KL; Sze SK; Yap CT; Shen HM
    Cell Res; 2018 Aug; 28(8):787-802. PubMed ID: 29934616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of PINK1, ubiquitin and Parkin interactions in mitochondrial quality control and beyond.
    Bayne AN; Trempe JF
    Cell Mol Life Sci; 2019 Dec; 76(23):4589-4611. PubMed ID: 31254044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation.
    Yamano K; Matsuda N; Tanaka K
    EMBO Rep; 2016 Mar; 17(3):300-16. PubMed ID: 26882551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease.
    Koentjoro B; Park JS; Sue CM
    Sci Rep; 2017 Mar; 7():44373. PubMed ID: 28281653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond.
    Bingol B; Sheng M
    Free Radic Biol Med; 2016 Nov; 100():210-222. PubMed ID: 27094585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance.
    Bertolin G; Ferrando-Miguel R; Jacoupy M; Traver S; Grenier K; Greene AW; Dauphin A; Waharte F; Bayot A; Salamero J; Lombès A; Bulteau AL; Fon EA; Brice A; Corti O
    Autophagy; 2013 Nov; 9(11):1801-17. PubMed ID: 24149440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL.
    Koyano F; Yamano K; Kosako H; Tanaka K; Matsuda N
    J Biol Chem; 2019 Jun; 294(26):10300-10314. PubMed ID: 31110043
    [No Abstract]   [Full Text] [Related]  

  • 11. The PINK1-Parkin axis: An Overview.
    Tanaka K
    Neurosci Res; 2020 Oct; 159():9-15. PubMed ID: 31982458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy.
    Kawajiri S; Saiki S; Sato S; Sato F; Hatano T; Eguchi H; Hattori N
    FEBS Lett; 2010 Mar; 584(6):1073-9. PubMed ID: 20153330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase.
    Birsa N; Norkett R; Wauer T; Mevissen TE; Wu HC; Foltynie T; Bhatia K; Hirst WD; Komander D; Plun-Favreau H; Kittler JT
    J Biol Chem; 2014 May; 289(21):14569-82. PubMed ID: 24671417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial CISD1/Cisd accumulation blocks mitophagy and genetic or pharmacological inhibition rescues neurodegenerative phenotypes in Pink1/parkin models.
    Martinez A; Sanchez-Martinez A; Pickering JT; Twyning MJ; Terriente-Felix A; Chen PL; Chen CH; Whitworth AJ
    Mol Neurodegener; 2024 Jan; 19(1):12. PubMed ID: 38273330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mitochondrial kinase PINK1: functions beyond mitophagy.
    Voigt A; Berlemann LA; Winklhofer KF
    J Neurochem; 2016 Oct; 139 Suppl 1():232-239. PubMed ID: 27251035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.
    Durcan TM; Fon EA
    Genes Dev; 2015 May; 29(10):989-99. PubMed ID: 25995186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short mitochondrial ARF triggers Parkin/PINK1-dependent mitophagy.
    Grenier K; Kontogiannea M; Fon EA
    J Biol Chem; 2014 Oct; 289(43):29519-30. PubMed ID: 25217637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease.
    Pickrell AM; Youle RJ
    Neuron; 2015 Jan; 85(2):257-73. PubMed ID: 25611507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of MIEF1/MiD51 confers susceptibility to BAX-mediated cell death and PINK1-PRKN-dependent mitophagy.
    Xian H; Liou YC
    Autophagy; 2019 Dec; 15(12):2107-2125. PubMed ID: 30894073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parkin and PINK1 functions in oxidative stress and neurodegeneration.
    Barodia SK; Creed RB; Goldberg MS
    Brain Res Bull; 2017 Jul; 133():51-59. PubMed ID: 28017782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 113.