BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32157705)

  • 21. Hypophosphatemic rickets: lessons from disrupted FGF23 control of phosphorus homeostasis.
    Goldsweig BK; Carpenter TO
    Curr Osteoporos Rep; 2015 Apr; 13(2):88-97. PubMed ID: 25620749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BRAF mutations are also associated with neurocutaneous melanocytosis and large/giant congenital melanocytic nevi.
    Salgado CM; Basu D; Nikiforova M; Bauer BS; Johnson D; Rundell V; Grunwaldt LJ; Reyes-Múgica M
    Pediatr Dev Pathol; 2015; 18(1):1-9. PubMed ID: 25490715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Important melanocytic lesions in childhood and adolescence.
    Roth ME; Grant-Kels JM
    Pediatr Clin North Am; 1991 Aug; 38(4):791-809. PubMed ID: 1870906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epidermal nevus syndrome associated with adnexal tumors, spitz nevus, and hypophosphatemic vitamin D-resistant rickets.
    Kishida ES; Muniz Silva MA; da Costa Pereira F; Sanches JA; Sotto MN
    Pediatr Dermatol; 2005; 22(1):48-54. PubMed ID: 15660898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Value of serum fibroblast growth factor 23 in diagnosis of hypophosphatemic rickets in children].
    Dong SS; Che RC; Zheng BX; Zhang AH; Wang CL; Bai M; Chen Y
    Zhongguo Dang Dai Er Ke Za Zhi; 2023 Jul; 25(7):705-710. PubMed ID: 37529952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postzygotic HRAS mutation causing both keratinocytic epidermal nevus and thymoma and associated with bone dysplasia and hypophosphatemia due to elevated FGF23.
    Avitan-Hersh E; Tatur S; Indelman M; Gepstein V; Shreter R; Hershkovitz D; Brick R; Bergman R; Tiosano D
    J Clin Endocrinol Metab; 2014 Jan; 99(1):E132-6. PubMed ID: 24243633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Updates on rickets and osteomalacia: FGF23-mediated hypophosphatemic rickets/osteomalacia].
    Michigami T
    Clin Calcium; 2013 Oct; 23(10):1429-35. PubMed ID: 24076640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Seven novel and six de novo PHEX gene mutations in patients with hypophosphatemic rickets.
    Li SS; Gu JM; Yu WJ; He JW; Fu WZ; Zhang ZL
    Int J Mol Med; 2016 Dec; 38(6):1703-1714. PubMed ID: 27840894
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations.
    Bauer J; Curtin JA; Pinkel D; Bastian BC
    J Invest Dermatol; 2007 Jan; 127(1):179-82. PubMed ID: 16888631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Giant congenital melanocytic nevi.
    Escandón-Pérez S; Landeta-Sa AP; González-Jasso Y; Arenas-Guzmán R
    Bol Med Hosp Infant Mex; 2019; 76(6):251-258. PubMed ID: 31769436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bathing trunks nevus: case report of giant congenital melanocytic nevus.
    Russ R; Light L
    Cutis; 2009 Feb; 83(2):69-72. PubMed ID: 19326690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hypophosphatemic rickets associated with epidermal nevus syndrome and giant hairy nevus.
    Chou YY; Chao SC; Shiue CN; Tsai WH; Lin SJ
    J Pediatr Endocrinol Metab; 2005 Jan; 18(1):93-5. PubMed ID: 15679074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular diagnosis of a benign proliferative nodule developing in a congenital melanocytic nevus in a 3-month-old infant.
    Murphy MJ; Jen M; Chang MW; Grant-Kels JM; Makkar H
    J Am Acad Dermatol; 2008 Sep; 59(3):518-23. PubMed ID: 18640742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hypophosphatemic vitamin D-resistant rickets and multiple spindle and epithelioid nevi associated with linear nevus sebaceus syndrome.
    Goldblum JR; Headington JT
    J Am Acad Dermatol; 1993 Jul; 29(1):109-11. PubMed ID: 8391030
    [No Abstract]   [Full Text] [Related]  

  • 35. Congenital Melanocytic Nevus Syndrome: A Case Series.
    Recio A; Sánchez-Moya AI; Félix V; Campos Y
    Actas Dermosifiliogr; 2017 Nov; 108(9):e57-e62. PubMed ID: 28110826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Number of satellite nevi as a correlate for neurocutaneous melanocytosis in patients with large congenital melanocytic nevi.
    Marghoob AA; Dusza S; Oliveria S; Halpern AC
    Arch Dermatol; 2004 Feb; 140(2):171-5. PubMed ID: 14967788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic Abnormalities in Large to Giant Congenital Nevi: Beyond NRAS Mutations.
    Martins da Silva V; Martinez-Barrios E; Tell-Martí G; Dabad M; Carrera C; Aguilera P; Brualla D; Esteve-Codina A; Vicente A; Puig S; Puig-Butillé JA; Malvehy J
    J Invest Dermatol; 2019 Apr; 139(4):900-908. PubMed ID: 30359577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The risk of melanoma and neurocutaneous melanosis associated with congenital melanocytic nevi.
    Shah KN
    Semin Cutan Med Surg; 2010 Sep; 29(3):159-64. PubMed ID: 21051009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neurocutaneous melanosis in a newborn with giant congenital melanocytic nevus.
    D'Argenio A; David P; Engohan C; Hennequin Y; Balériaux D; Jissendi P
    J Neuroradiol; 2007 Oct; 34(4):272-5. PubMed ID: 17727949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatiotemporal expression of NRAS and occurrence of giant congenital melanocytic nevi.
    Aimaier R; Chung M; Zhu H; Yu Q
    Exp Dermatol; 2022 Apr; 31(4):582-585. PubMed ID: 35020224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.