These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32157875)

  • 1. Light Olefin Diffusion during the MTO Process on H-SAPO-34: A Complex Interplay of Molecular Factors.
    Cnudde P; Demuynck R; Vandenbrande S; Waroquier M; Sastre G; Speybroeck VV
    J Am Chem Soc; 2020 Apr; 142(13):6007-6017. PubMed ID: 32157875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Zeolite Framework Composition and Flexibility on Methanol-To-Olefins Selectivity: Confinement or Diffusion?
    Ferri P; Li C; Millán R; Martínez-Triguero J; Moliner M; Boronat M; Corma A
    Angew Chem Int Ed Engl; 2020 Oct; 59(44):19708-19715. PubMed ID: 32597576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and Theoretical Evidence for the Promotional Effect of Acid Sites on the Diffusion of Alkenes through Small-Pore Zeolites.
    Cnudde P; Redekop EA; Dai W; Porcaro NG; Waroquier M; Bordiga S; Hunger M; Li L; Olsbye U; Van Speybroeck V
    Angew Chem Int Ed Engl; 2021 Apr; 60(18):10016-10022. PubMed ID: 33496374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling product selectivity and catalyst lifetime by altering acid strength, cavity size of SAPO, and diffusion rate of methanol in the MTO reaction: DFT and MD calculations.
    Soheili S; Nakhaei Pour A
    Phys Chem Chem Phys; 2024 Feb; 26(6):5226-5236. PubMed ID: 38261405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the Sole Olefin-Based Cycle in Small-Cage MCM-35-Catalyzed Methanol-to-Olefins Reactions.
    Liu Z; Mao M; Yangcheng R; Lv S
    Molecules; 2024 Apr; 29(9):. PubMed ID: 38731528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Detection of Supramolecular Reaction Centers in the Methanol-to-Olefins Conversion over Zeolite H-ZSM-5 by (13)C-(27)Al Solid-State NMR Spectroscopy.
    Wang C; Wang Q; Xu J; Qi G; Gao P; Wang W; Zou Y; Feng N; Liu X; Deng F
    Angew Chem Int Ed Engl; 2016 Feb; 55(7):2507-11. PubMed ID: 26732748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the Reaction Temperature on the Nature of the Active and Deactivating Species During Methanol-to-Olefins Conversion over H-SAPO-34.
    Borodina E; Sharbini Harun Kamaluddin H; Meirer F; Mokhtar M; Asiri AM; Al-Thabaiti SA; Basahel SN; Ruiz-Martinez J; Weckhuysen BM
    ACS Catal; 2017 Aug; 7(8):5268-5281. PubMed ID: 28824823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment.
    Hemelsoet K; Van der Mynsbrugge J; De Wispelaere K; Waroquier M; Van Speybroeck V
    Chemphyschem; 2013 Jun; 14(8):1526-45. PubMed ID: 23595911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-particle spectroscopy on large SAPO-34 crystals at work: methanol-to-olefin versus ethanol-to-olefin processes.
    Qian Q; Ruiz-Martínez J; Mokhtar M; Asiri AM; Al-Thabaiti SA; Basahel SN; van der Bij HE; Kornatowski J; Weckhuysen BM
    Chemistry; 2013 Aug; 19(34):11204-15. PubMed ID: 23881641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion.
    Yang L; Wang C; Zhang L; Dai W; Chu Y; Xu J; Wu G; Gao M; Liu W; Xu Z; Wang P; Guan N; Dyballa M; Ye M; Deng F; Fan W; Li L
    Nat Commun; 2021 Aug; 12(1):4661. PubMed ID: 34341350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV-vis Spectroscopy.
    Goetze J; Yarulina I; Gascon J; Kapteijn F; Weckhuysen BM
    ACS Catal; 2018 Mar; 8(3):2060-2070. PubMed ID: 29527401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed transforming of coke to active intermediates in methanol-to-olefins catalyst to boost light olefins selectivity.
    Zhou J; Gao M; Zhang J; Liu W; Zhang T; Li H; Xu Z; Ye M; Liu Z
    Nat Commun; 2021 Jan; 12(1):17. PubMed ID: 33397957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoporogen-Free Synthesis of Hierarchical SAPO-34 with Low Template Consumption and Excellent Methanol-to-Olefin Conversion.
    Sun Q; Wang N; Bai R; Chen G; Shi Z; Zou Y; Yu J
    ChemSusChem; 2018 Nov; 11(21):3812-3820. PubMed ID: 30178630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cavity-controlled methanol conversion over zeolite catalysts.
    Zhang W; Lin S; Wei Y; Tian P; Ye M; Liu Z
    Natl Sci Rev; 2023 Sep; 10(9):nwad120. PubMed ID: 37565191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution.
    Li Z; Martínez-Triguero J; Concepción P; Yu J; Corma A
    Phys Chem Chem Phys; 2013 Sep; 15(35):14670-80. PubMed ID: 23897003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methanol-to-Olefins in a Membrane Reactor with in situ Steam Removal - The Decisive Role of Coking.
    Rieck Genannt Best F; Mundstock A; Dräger G; Rusch P; Bigall NC; Richter H; Caro J
    ChemCatChem; 2020 Jan; 12(1):273-280. PubMed ID: 32064007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design Synthesis of Low-Silica SAPO-34 Nanocrystals by Constructing Isomorphous Core-Shell Structure: An Effective Catalyst for Improving Catalytic Performances in Methanol-to-Olefins Reaction.
    Wang Q; Dai W; Dai Y; Pan M; Liu Y; Zhang L; Zheng J; Liu X; Li R; Ma L; Wang H; Zong Y
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):14308-14320. PubMed ID: 38456610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of zeolite microenvironment for propene synthesis from methanol.
    Lin L; Fan M; Sheveleva AM; Han X; Tang Z; Carter JH; da Silva I; Parlett CMA; Tuna F; McInnes EJL; Sastre G; Rudić S; Cavaye H; Parker SF; Cheng Y; Daemen LL; Ramirez-Cuesta AJ; Attfield MP; Liu Y; Tang CC; Han B; Yang S
    Nat Commun; 2021 Feb; 12(1):822. PubMed ID: 33547288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical simulations elucidate the role of naphthalenic species during methanol conversion within H-SAPO-34.
    Hemelsoet K; Nollet A; Van Speybroeck V; Waroquier M
    Chemistry; 2011 Aug; 17(33):9083-93. PubMed ID: 21774006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance analysis of ultrasound-assisted synthesized nano-hierarchical SAPO-34 catalyst in the methanol-to-lights-olefins process via artificial intelligence methods.
    Azarhoosh MJ; Halladj R; Askari S; Aghaeinejad-Meybodi A
    Ultrason Sonochem; 2019 Nov; 58():104646. PubMed ID: 31450297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.