These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 32158025)
1. A Finite Mixture Item Response Theory Model for Continuous Measurement Outcomes. Zopluoglu C Educ Psychol Meas; 2020 Apr; 80(2):346-364. PubMed ID: 32158025 [TBL] [Abstract][Full Text] [Related]
2. Sample Size Requirements for Applying Mixed Polytomous Item Response Models: Results of a Monte Carlo Simulation Study. Kutscher T; Eid M; Crayen C Front Psychol; 2019; 10():2494. PubMed ID: 31798490 [TBL] [Abstract][Full Text] [Related]
3. A Comparative Study of Item Response Theory Models for Mixed Discrete-Continuous Responses. Zopluoglu C; Lockwood JR J Intell; 2024 Feb; 12(3):. PubMed ID: 38535160 [TBL] [Abstract][Full Text] [Related]
4. A comparison of two estimation algorithms for Samejima's continuous IRT model. Zopluoglu C Behav Res Methods; 2013 Mar; 45(1):54-64. PubMed ID: 22733227 [TBL] [Abstract][Full Text] [Related]
5. Theoretical and Empirical Comparisons between Two Models for Continuous Item Response. Ferrando PJ Multivariate Behav Res; 2002 Oct; 37(4):521-42. PubMed ID: 26816326 [TBL] [Abstract][Full Text] [Related]
7. Killing Two Birds with One Stone: Accounting for Unfolding Item Response Process and Response Styles Using Unfolding Item Response Tree Models. Li Z; Li L; Zhang B; Cao M; Tay L Multivariate Behav Res; 2024 Aug; ():1-23. PubMed ID: 39215711 [TBL] [Abstract][Full Text] [Related]
8. The Impact of Sample Size and Various Other Factors on Estimation of Dichotomous Mixture IRT Models. Sen S; Cohen AS Educ Psychol Meas; 2023 Jun; 83(3):520-555. PubMed ID: 37187690 [TBL] [Abstract][Full Text] [Related]
9. Investigating the Impact of Item Parameter Drift for Item Response Theory Models with Mixture Distributions. Park YS; Lee YS; Xing K Front Psychol; 2016; 7():255. PubMed ID: 26941699 [TBL] [Abstract][Full Text] [Related]
10. General mixture item response models with different item response structures: Exposition with an application to Likert scales. Tijmstra J; Bolsinova M; Jeon M Behav Res Methods; 2018 Dec; 50(6):2325-2344. PubMed ID: 29322400 [TBL] [Abstract][Full Text] [Related]
11. Different Approaches to Covariate Inclusion in the Mixture Rasch Model. Li T; Jiao H; Macready GB Educ Psychol Meas; 2016 Oct; 76(5):848-872. PubMed ID: 29795891 [TBL] [Abstract][Full Text] [Related]
12. Rasch Model Parameter Estimation in the Presence of a Nonnormal Latent Trait Using a Nonparametric Bayesian Approach. Finch H; Edwards JM Educ Psychol Meas; 2016 Aug; 76(4):662-684. PubMed ID: 29795882 [TBL] [Abstract][Full Text] [Related]
13. A Finite Mixture of Nonlinear Random Coefficient Models for Continuous Repeated Measures Data. Kohli N; Harring JR; Zopluoglu C Psychometrika; 2016 Sep; 81(3):851-80. PubMed ID: 25925010 [TBL] [Abstract][Full Text] [Related]
15. A mixture hierarchical model for response times and response accuracy. Wang C; Xu G Br J Math Stat Psychol; 2015 Nov; 68(3):456-77. PubMed ID: 25873487 [TBL] [Abstract][Full Text] [Related]
16. Ignoring a Multilevel Structure in Mixture Item Response Models: Impact on Parameter Recovery and Model Selection. Lee WY; Cho SJ; Sterba SK Appl Psychol Meas; 2018 Mar; 42(2):136-154. PubMed ID: 29882542 [TBL] [Abstract][Full Text] [Related]
17. Comparative Analyses of MIRT Models and Software (BMIRT and flexMIRT). Yavuz G; Hambleton RK Educ Psychol Meas; 2017 Apr; 77(2):263-274. PubMed ID: 29795913 [TBL] [Abstract][Full Text] [Related]
18. A Comparison of ML, WLSMV, and Bayesian Methods for Multilevel Structural Equation Models in Small Samples: A Simulation Study. Holtmann J; Koch T; Lochner K; Eid M Multivariate Behav Res; 2016; 51(5):661-680. PubMed ID: 27594086 [TBL] [Abstract][Full Text] [Related]