These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32158494)

  • 1. ROSE-X: an annotated data set for evaluation of 3D plant organ segmentation methods.
    Dutagaci H; Rasti P; Galopin G; Rousseau D
    Plant Methods; 2020; 16():28. PubMed ID: 32158494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmentation of structural parts of rosebush plants with 3D point-based deep learning methods.
    Turgut K; Dutagaci H; Galopin G; Rousseau D
    Plant Methods; 2022 Feb; 18(1):20. PubMed ID: 35184728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eff-3DPSeg: 3D Organ-Level Plant Shoot Segmentation Using Annotation-Efficient Deep Learning.
    Luo L; Jiang X; Yang Y; Samy ERA; Lefsrud M; Hoyos-Villegas V; Sun S
    Plant Phenomics; 2023; 5():0080. PubMed ID: 37539075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D data-augmentation methods for semantic segmentation of tomato plant parts.
    Xin B; Sun J; Bartholomeus H; Kootstra G
    Front Plant Sci; 2023; 14():1045545. PubMed ID: 37377799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Point-Cloud Segmentation for Plant Phenotyping Through Class-Dependent Sampling of Training Data to Battle Class Imbalance.
    Boogaard FP; van Henten EJ; Kootstra G
    Front Plant Sci; 2022; 13():838190. PubMed ID: 35419014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collaborative Learning for Annotation-Efficient Volumetric MR Image Segmentation.
    Osman YBM; Li C; Huang W; Wang S
    J Magn Reson Imaging; 2023 Dec; ():. PubMed ID: 38156427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A graph-based approach for simultaneous semantic and instance segmentation of plant 3D point clouds.
    Mirande K; Godin C; Tisserand M; Charlaix J; Besnard F; Hétroy-Wheeler F
    Front Plant Sci; 2022; 13():1012669. PubMed ID: 36438118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFSP: A fast and automatic distance field-based stem-leaf segmentation pipeline for point cloud of maize shoot.
    Wang D; Song Z; Miao T; Zhu C; Yang X; Yang T; Zhou Y; Den H; Xu T
    Front Plant Sci; 2023; 14():1109314. PubMed ID: 36798707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated interpretation of 3D laserscanned point clouds for plant organ segmentation.
    Wahabzada M; Paulus S; Kersting K; Mahlein AK
    BMC Bioinformatics; 2015 Aug; 16():248. PubMed ID: 26253564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches.
    Zhou X
    Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Image Segmentation With Sparse Annotation by Self-Training and Internal Registration.
    Bitarafan A; Nikdan M; Baghshah MS
    IEEE J Biomed Health Inform; 2021 Jul; 25(7):2665-2672. PubMed ID: 33211667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient contour-based annotation by iterative deep learning for organ segmentation from volumetric medical images.
    Zhuang M; Chen Z; Wang H; Tang H; He J; Qin B; Yang Y; Jin X; Yu M; Jin B; Li T; Kettunen L
    Int J Comput Assist Radiol Surg; 2023 Feb; 18(2):379-394. PubMed ID: 36048319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-supervised auto-segmentation method for pelvic organ-at-risk in magnetic resonance images based on deep-learning.
    Li X; Jia L; Lin F; Chai F; Liu T; Zhang W; Wei Z; Xiong W; Li H; Zhang M; Wang Y
    J Appl Clin Med Phys; 2024 Feb; 25(3):e14296. PubMed ID: 38386963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label3DMaize: toolkit for 3D point cloud data annotation of maize shoots.
    Miao T; Wen W; Li Y; Wu S; Zhu C; Guo X
    Gigascience; 2021 May; 10(5):. PubMed ID: 33963385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic Analysis of Diseased Plant Leaves Using Supervised and Weakly Supervised Deep Learning.
    Zhou L; Xiao Q; Taha MF; Xu C; Zhang C
    Plant Phenomics; 2023; 5():0022. PubMed ID: 37040509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic segmentation of the pharyngeal airway space with convolutional neural network.
    Shujaat S; Jazil O; Willems H; Van Gerven A; Shaheen E; Politis C; Jacobs R
    J Dent; 2021 Aug; 111():103705. PubMed ID: 34077802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Logistic Regression-Based Model Is More Efficient Than U-Net Model for Reliable Whole Brain Magnetic Resonance Imaging Segmentation.
    Dieckhaus H; Meijboom R; Okar S; Wu T; Parvathaneni P; Mina Y; Chandran S; Waldman AD; Reich DS; Nair G
    Top Magn Reson Imaging; 2022 Jun; 31(3):31-39. PubMed ID: 35767314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.