These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 32158767)
1. From Compressed-Sensing to Artificial Intelligence-Based Cardiac MRI Reconstruction. Bustin A; Fuin N; Botnar RM; Prieto C Front Cardiovasc Med; 2020; 7():17. PubMed ID: 32158767 [TBL] [Abstract][Full Text] [Related]
2. Artificial Intelligence in Cardiac MRI: Is Clinical Adoption Forthcoming? Fotaki A; Puyol-Antón E; Chiribiri A; Botnar R; Pushparajah K; Prieto C Front Cardiovasc Med; 2021; 8():818765. PubMed ID: 35083303 [TBL] [Abstract][Full Text] [Related]
3. Synergistic multi-contrast cardiac magnetic resonance image reconstruction. Qi H; Cruz G; Botnar R; Prieto C Philos Trans A Math Phys Eng Sci; 2021 Jun; 379(2200):20200197. PubMed ID: 33966456 [TBL] [Abstract][Full Text] [Related]
4. A motion-corrected deep-learning reconstruction framework for accelerating whole-heart magnetic resonance imaging in patients with congenital heart disease. Phair A; Fotaki A; Felsner L; Fletcher TJ; Qi H; Botnar RM; Prieto C J Cardiovasc Magn Reson; 2024; 26(1):101039. PubMed ID: 38521391 [TBL] [Abstract][Full Text] [Related]
5. Artificial intelligence in cardiac magnetic resonance fingerprinting. Velasco C; Fletcher TJ; Botnar RM; Prieto C Front Cardiovasc Med; 2022; 9():1009131. PubMed ID: 36204566 [TBL] [Abstract][Full Text] [Related]
6. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data. Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277 [TBL] [Abstract][Full Text] [Related]
7. Cardiac MR: From Theory to Practice. Ismail TF; Strugnell W; Coletti C; Božić-Iven M; Weingärtner S; Hammernik K; Correia T; Küstner T Front Cardiovasc Med; 2022; 9():826283. PubMed ID: 35310962 [TBL] [Abstract][Full Text] [Related]
8. Conventional and Deep-Learning-Based Image Reconstructions of Undersampled K-Space Data of the Lumbar Spine Using Compressed Sensing in MRI: A Comparative Study on 20 Subjects. Fervers P; Zaeske C; Rauen P; Iuga AI; Kottlors J; Persigehl T; Sonnabend K; Weiss K; Bratke G Diagnostics (Basel); 2023 Jan; 13(3):. PubMed ID: 36766523 [TBL] [Abstract][Full Text] [Related]
9. Primer and Historical Review on Rapid Cardiac CINE MRI. Curtis AD; Cheng HM J Magn Reson Imaging; 2022 Feb; 55(2):373-388. PubMed ID: 33179830 [TBL] [Abstract][Full Text] [Related]
10. Implementation and prospective clinical validation of AI-based planning and shimming techniques in cardiac MRI. Edalati M; Zheng Y; Watkins MP; Chen J; Liu L; Zhang S; Song Y; Soleymani S; Lenihan DJ; Lanza GM Med Phys; 2022 Jan; 49(1):129-143. PubMed ID: 34748660 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning-Based Reconstruction for Cardiac MRI: A Review. Oscanoa JA; Middione MJ; Alkan C; Yurt M; Loecher M; Vasanawala SS; Ennis DB Bioengineering (Basel); 2023 Mar; 10(3):. PubMed ID: 36978725 [TBL] [Abstract][Full Text] [Related]
12. Deep learning-based left ventricular segmentation demonstrates improved performance on respiratory motion-resolved whole-heart reconstructions. Yang Y; Shah Z; Jacob AJ; Hair J; Chitiboi T; Passerini T; Yerly J; Di Sopra L; Piccini D; Hosseini Z; Sharma P; Sahu A; Stuber M; Oshinski JN Front Radiol; 2023; 3():1144004. PubMed ID: 37492382 [TBL] [Abstract][Full Text] [Related]
13. Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction. Kofler A; Pali MC; Schaeffter T; Kolbitsch C Med Phys; 2023 May; 50(5):2939-2960. PubMed ID: 36565150 [TBL] [Abstract][Full Text] [Related]
14. Improving the efficiency and accuracy of cardiovascular magnetic resonance with artificial intelligence-review of evidence and proposition of a roadmap to clinical translation. Zhang Q; Fotaki A; Ghadimi S; Wang Y; Doneva M; Wetzl J; Delfino JG; O'Regan DP; Prieto C; Epstein FH J Cardiovasc Magn Reson; 2024 Jun; 26(2):101051. PubMed ID: 38909656 [TBL] [Abstract][Full Text] [Related]
15. Accelerating 3D MTC-BOOST in patients with congenital heart disease using a joint multi-scale variational neural network reconstruction. Fotaki A; Fuin N; Nordio G; Velasco Jimeno C; Qi H; Emmanuel Y; Pushparajah K; Botnar RM; Prieto C Magn Reson Imaging; 2022 Oct; 92():120-132. PubMed ID: 35772584 [TBL] [Abstract][Full Text] [Related]
16. A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction. Schlemper J; Caballero J; Hajnal JV; Price AN; Rueckert D IEEE Trans Med Imaging; 2018 Feb; 37(2):491-503. PubMed ID: 29035212 [TBL] [Abstract][Full Text] [Related]
17. Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging. Zhou R; Huang W; Yang Y; Chen X; Weller DS; Kramer CM; Kozerke S; Salerno M J Cardiovasc Magn Reson; 2018 Feb; 20(1):6. PubMed ID: 29386056 [TBL] [Abstract][Full Text] [Related]
18. Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review. Singh D; Monga A; de Moura HL; Zhang X; Zibetti MVW; Regatte RR Bioengineering (Basel); 2023 Aug; 10(9):. PubMed ID: 37760114 [TBL] [Abstract][Full Text] [Related]
19. Motion-corrected 3D whole-heart water-fat high-resolution late gadolinium enhancement cardiovascular magnetic resonance imaging. Munoz C; Bustin A; Neji R; Kunze KP; Forman C; Schmidt M; Hajhosseiny R; Masci PG; Zeilinger M; Wuest W; Botnar RM; Prieto C J Cardiovasc Magn Reson; 2020 Jul; 22(1):53. PubMed ID: 32684167 [TBL] [Abstract][Full Text] [Related]
20. Localized spatio-temporal constraints for accelerated CMR perfusion. Akçakaya M; Basha TA; Pflugi S; Foppa M; Kissinger KV; Hauser TH; Nezafat R Magn Reson Med; 2014 Sep; 72(3):629-39. PubMed ID: 24123058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]