These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 32159154)
1. Shape-defined solid micro-objects from poly(d,l-lactic acid) as cell-supportive counterparts in bottom-up tissue engineering. Leferink AM; Tibbe MP; Bossink EGBM; de Heus LE; van Vossen H; van den Berg A; Moroni L; Truckenmüller RK Mater Today Bio; 2019 Sep; 4():100025. PubMed ID: 32159154 [TBL] [Abstract][Full Text] [Related]
2. Engineered micro-objects as scaffolding elements in cellular building blocks for bottom-up tissue engineering approaches. Leferink A; Schipper D; Arts E; Vrij E; Rivron N; Karperien M; Mittmann K; van Blitterswijk C; Moroni L; Truckenmüller R Adv Mater; 2014 Apr; 26(16):2592-9. PubMed ID: 24395427 [TBL] [Abstract][Full Text] [Related]
3. Co-culture of human umbilical vein endothelial cells and human bone marrow stromal cells into a micro-cavitary gelatin-methacrylate hydrogel system to enhance angiogenesis. Liu J; Chuah YJ; Fu J; Zhu W; Wang DA Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():906-916. PubMed ID: 31147062 [TBL] [Abstract][Full Text] [Related]
4. Polymeric Microspheres/Cells/Extracellular Matrix Constructs Produced by Auto-Assembly for Bone Modular Tissue Engineering. Mielan B; Sousa DM; Krok-Borkowicz M; Eloy P; Dupont C; Lamghari M; Pamuła E Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360672 [TBL] [Abstract][Full Text] [Related]
5. Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Mekhileri NV; Lim KS; Brown GCJ; Mutreja I; Schon BS; Hooper GJ; Woodfield TBF Biofabrication; 2018 Jan; 10(2):024103. PubMed ID: 29199637 [TBL] [Abstract][Full Text] [Related]
6. Preparation of three-dimensional vascularized MSC cell sheet constructs for tissue regeneration. Ren L; Ma D; Liu B; Li J; Chen J; Yang D; Gao P Biomed Res Int; 2014; 2014():301279. PubMed ID: 25110670 [TBL] [Abstract][Full Text] [Related]
7. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related]
8. Construction of vascularized tissue-engineered breast with dual angiogenic and adipogenic micro-tissues. Ni R; Luo C; Ci H; Sun D; An R; Wang Z; Yang J; Li Y; Sun J Mater Today Bio; 2023 Feb; 18():100539. PubMed ID: 36686035 [TBL] [Abstract][Full Text] [Related]
9. Engineering pre-vascularized bone-like tissue from human mesenchymal stem cells through simulating endochondral ossification. Lin Z; Zhang X; Fritch MR; Li Z; Kuang B; Alexander PG; Hao T; Cao G; Tan S; Bruce KK; Lin H Biomaterials; 2022 Apr; 283():121451. PubMed ID: 35259584 [TBL] [Abstract][Full Text] [Related]
10. Endothelial cells support osteogenesis in an in vitro vascularized bone model developed by 3D bioprinting. Chiesa I; De Maria C; Lapomarda A; Fortunato GM; Montemurro F; Di Gesù R; Tuan RS; Vozzi G; Gottardi R Biofabrication; 2020 Feb; 12(2):025013. PubMed ID: 31929117 [TBL] [Abstract][Full Text] [Related]
11. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering. Heo DN; Ayan B; Dey M; Banerjee D; Wee H; Lewis GS; Ozbolat IT Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33059343 [TBL] [Abstract][Full Text] [Related]
12. Permeable hollow 3D tissue-like constructs engineered by on-chip hydrodynamic-driven assembly of multicellular hierarchical micromodules. Cui J; Wang H; Shi Q; Ferraro P; Sun T; Dario P; Huang Q; Fukuda T Acta Biomater; 2020 Sep; 113():328-338. PubMed ID: 32534164 [TBL] [Abstract][Full Text] [Related]
13. Modular assembly-based approach of loosely packing co-cultured hepatic tissue elements with endothelialization for liver tissue engineering. He J; Pang Y; Yang H; Montagne K; Shinohara M; Mao Y; Sun W; Sakai Y Ann Transl Med; 2020 Nov; 8(21):1400. PubMed ID: 33313145 [TBL] [Abstract][Full Text] [Related]
14. Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs. Terpstra ML; Li J; Mensinga A; de Ruijter M; van Rijen MHP; Androulidakis C; Galiotis C; Papantoniou I; Matsusaki M; Malda J; Levato R Biofabrication; 2022 Apr; 14(3):. PubMed ID: 35354130 [TBL] [Abstract][Full Text] [Related]
17. Influence of scaffold properties on the inter-relationship between human bone marrow derived stromal cells and endothelial cells in pro-osteogenic conditions. Stoppato M; Stevens HY; Carletti E; Migliaresi C; Motta A; Guldberg RE Acta Biomater; 2015 Oct; 25():16-23. PubMed ID: 26162586 [TBL] [Abstract][Full Text] [Related]
18. Bottom-up approach to construct microfabricated multi-layer scaffolds for bone tissue engineering. Lima MJ; Pirraco RP; Sousa RA; Neves NM; Marques AP; Bhattacharya M; Correlo VM; Reis RL Biomed Microdevices; 2014 Feb; 16(1):69-78. PubMed ID: 24122322 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of Biomimetic Bone Tissue Using Mesenchymal Stem Cell-Derived Three-Dimensional Constructs Incorporating Endothelial Cells. Sasaki J; Hashimoto M; Yamaguchi S; Itoh Y; Yoshimoto I; Matsumoto T; Imazato S PLoS One; 2015; 10(6):e0129266. PubMed ID: 26047122 [TBL] [Abstract][Full Text] [Related]
20. A rapid biofabrication technique for self-assembled collagen-based multicellular and heterogeneous 3D tissue constructs. Shahin-Shamsabadi A; Selvaganapathy PR Acta Biomater; 2019 Jul; 92():172-183. PubMed ID: 31085365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]