These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32159364)

  • 21. Proteomic Analysis of KCNK3 Loss of Expression Identified Dysregulated Pathways in Pulmonary Vascular Cells.
    Le Ribeuz H; Dumont F; Ruellou G; Lambert M; Balliau T; Quatredeniers M; Girerd B; Cohen-Kaminsky S; Mercier O; Yen-Nicolaÿ S; Humbert M; Montani D; Capuano V; Antigny F
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33036472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications.
    Olschewski A; Veale EL; Nagy BM; Nagaraj C; Kwapiszewska G; Antigny F; Lambert M; Humbert M; Czirják G; Enyedi P; Mathie A
    Eur Respir J; 2017 Nov; 50(5):. PubMed ID: 29122916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension.
    Song S; Yamamura A; Yamamura H; Ayon RJ; Smith KA; Tang H; Makino A; Yuan JX
    Am J Physiol Cell Physiol; 2014 Aug; 307(4):C373-83. PubMed ID: 24920677
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Defective cellular trafficking of the bone morphogenetic protein receptor type II by mutations underlying familial pulmonary arterial hypertension.
    John A; Kizhakkedath P; Al-Gazali L; Ali BR
    Gene; 2015 Apr; 561(1):148-56. PubMed ID: 25688877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upregulated ClC3 Channels/Transporters Elicit Swelling-Activated Cl
    Amano T; Yamamura A; Fujiwara M; Hirai S; Kondo R; Suzuki Y; Yamamura H
    Biol Pharm Bull; 2022 Nov; 45(11):1684-1691. PubMed ID: 35989293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CCL5 deficiency rescues pulmonary vascular dysfunction, and reverses pulmonary hypertension via caveolin-1-dependent BMPR2 activation.
    Nie X; Tan J; Dai Y; Liu Y; Zou J; Sun J; Ye S; Shen C; Fan L; Chen J; Bian JS
    J Mol Cell Cardiol; 2018 Mar; 116():41-56. PubMed ID: 29374556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. O-linked β-N-acetylglucosamine transferase directs cell proliferation in idiopathic pulmonary arterial hypertension.
    Barnes JW; Tian L; Heresi GA; Farver CF; Asosingh K; Comhair SA; Aulak KS; Dweik RA
    Circulation; 2015 Apr; 131(14):1260-8. PubMed ID: 25663381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcilytics enhance sildenafil-induced antiproliferation in idiopathic pulmonary arterial hypertension.
    Yamamura A; Yagi S; Ohara N; Tsukamoto K
    Eur J Pharmacol; 2016 Aug; 784():15-21. PubMed ID: 27164419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic counselling in a national referral centre for pulmonary hypertension.
    Girerd B; Montani D; Jaïs X; Eyries M; Yaici A; Sztrymf B; Savale L; Parent F; Coulet F; Godinas L; Lau EM; Tamura Y; Sitbon O; Soubrier F; Simonneau G; Humbert M
    Eur Respir J; 2016 Feb; 47(2):541-52. PubMed ID: 26699722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potassium Channel Subfamily K Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension.
    Antigny F; Hautefort A; Meloche J; Belacel-Ouari M; Manoury B; Rucker-Martin C; Péchoux C; Potus F; Nadeau V; Tremblay E; Ruffenach G; Bourgeois A; Dorfmüller P; Breuils-Bonnet S; Fadel E; Ranchoux B; Jourdon P; Girerd B; Montani D; Provencher S; Bonnet S; Simonneau G; Humbert M; Perros F
    Circulation; 2016 Apr; 133(14):1371-85. PubMed ID: 26912814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. miR-143 and miR-145 promote hypoxia-induced proliferation and migration of pulmonary arterial smooth muscle cells through regulating ABCA1 expression.
    Yue Y; Zhang Z; Zhang L; Chen S; Guo Y; Hong Y
    Cardiovasc Pathol; 2018; 37():15-25. PubMed ID: 30195228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crucial role of RAGE in inappropriate increase of smooth muscle cells from patients with pulmonary arterial hypertension.
    Nakamura K; Sakaguchi M; Matsubara H; Akagi S; Sarashina T; Ejiri K; Akazawa K; Kondo M; Nakagawa K; Yoshida M; Miyoshi T; Ogo T; Oto T; Toyooka S; Higashimoto Y; Fukami K; Ito H
    PLoS One; 2018; 13(9):e0203046. PubMed ID: 30180189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of KCNK3 Dysfunction in Dasatinib-associated Pulmonary Arterial Hypertension and Endothelial Cell Dysfunction.
    Ribeuz HL; Willer AS; Chevalier B; Sancho M; Masson B; Eyries M; Jung V; Guerrera IC; Dutheil M; Jekmek KE; Laubry L; Carpentier G; Perez-Vizcaino F; Tu L; Guignabert C; Chaumais MC; Péchoux C; Humbert M; Hinzpeter A; Mercier O; Capuano V; Montani D; Antigny F
    Am J Respir Cell Mol Biol; 2024 Jul; 71(1):95-109. PubMed ID: 38546978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical Genomic Networks and Vasoreactive Variants in Idiopathic Pulmonary Arterial Hypertension.
    Hemnes AR; Zhao M; West J; Newman JH; Rich S; Archer SL; Robbins IM; Blackwell TS; Cogan J; Loyd JE; Zhao Z; Gaskill C; Jetter C; Kropski JA; Majka SM; Austin ED
    Am J Respir Crit Care Med; 2016 Aug; 194(4):464-75. PubMed ID: 26926454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SKF96365 activates calcium-sensing receptors in pulmonary arterial smooth muscle cells.
    Miyaki R; Yamamura A; Kawade A; Fujiwara M; Kondo R; Suzuki Y; Yamamura H
    Biochem Biophys Res Commun; 2022 Jun; 607():44-48. PubMed ID: 35366542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathological function of Ca2+-sensing receptor in pulmonary arterial hypertension.
    Yamamura A
    J Smooth Muscle Res; 2014; 50():8-17. PubMed ID: 24770445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The genetic basis of pulmonary arterial hypertension.
    Ma L; Chung WK
    Hum Genet; 2014 May; 133(5):471-9. PubMed ID: 24442418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH.
    Zhu N; Swietlik EM; Welch CL; Pauciulo MW; Hagen JJ; Zhou X; Guo Y; Karten J; Pandya D; Tilly T; Lutz KA; Martin JM; Treacy CM; Rosenzweig EB; Krishnan U; Coleman AW; Gonzaga-Jauregui C; Lawrie A; Trembath RC; Wilkins MR; ; ; ; ; Morrell NW; Shen Y; Gräf S; Nichols WC; Chung WK
    Genome Med; 2021 May; 13(1):80. PubMed ID: 33971972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potassium Channels as Therapeutic Targets in Pulmonary Arterial Hypertension.
    Redel-Traub G; Sampson KJ; Kass RS; Bohnen MS
    Biomolecules; 2022 Sep; 12(10):. PubMed ID: 36291551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bmpr2 Mutant Rats Develop Pulmonary and Cardiac Characteristics of Pulmonary Arterial Hypertension.
    Hautefort A; Mendes-Ferreira P; Sabourin J; Manaud G; Bertero T; Rucker-Martin C; Riou M; Adão R; Manoury B; Lambert M; Boet A; Lecerf F; Domergue V; Brás-Silva C; Gomez AM; Montani D; Girerd B; Humbert M; Antigny F; Perros F
    Circulation; 2019 Feb; 139(7):932-948. PubMed ID: 30586714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.