These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32159924)

  • 41. Contorted polycyclic aromatics.
    Ball M; Zhong Y; Wu Y; Schenck C; Ng F; Steigerwald M; Xiao S; Nuckolls C
    Acc Chem Res; 2015 Feb; 48(2):267-76. PubMed ID: 25523150
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stereoselective Syntheses, Structures, and Properties of Extremely Distorted Chiral Nanographenes Embedding Hextuple Helicenes.
    Roy M; Berezhnaia V; Villa M; Vanthuyne N; Giorgi M; Naubron JV; Poyer S; Monnier V; Charles L; Carissan Y; Hagebaum-Reignier D; Rodriguez J; Gingras M; Coquerel Y
    Angew Chem Int Ed Engl; 2020 Feb; 59(8):3264-3271. PubMed ID: 31805201
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Topological Defect-Induced Magnetism in a Nanographene.
    Mishra S; Beyer D; Berger R; Liu J; Gröning O; Urgel JI; Müllen K; Ruffieux P; Feng X; Fasel R
    J Am Chem Soc; 2020 Jan; 142(3):1147-1152. PubMed ID: 31904953
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intrinsic Emission from Nanographenes.
    Yamato K; Sekiya R; Nishitani S; Haino T
    Chem Asian J; 2019 Sep; 14(18):3213-3220. PubMed ID: 31400071
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chirality-Embedded Nanographenes.
    Nishitani S; Sekiya R; Haino T
    Angew Chem Int Ed Engl; 2020 Jan; 59(2):669-673. PubMed ID: 31670446
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A core-expanded subphthalocyanine analogue with a significantly distorted conjugated surface and unprecedented properties.
    Shimizu S; Nakano S; Kojima A; Kobayashi N
    Angew Chem Int Ed Engl; 2014 Feb; 53(9):2408-12. PubMed ID: 24478165
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On-Surface Synthesis of Non-Benzenoid Nanographenes Embedding Azulene and Stone-Wales Topologies.
    Biswas K; Chen Q; Obermann S; Ma J; Soler-Polo D; Melidonie J; Barragán A; Sánchez-Grande A; Lauwaet K; Gallego JM; Miranda R; Écija D; Jelínek P; Feng X; Urgel JI
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202318185. PubMed ID: 38299925
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Magnetic edge-states in nanographene, HNO3-doped nanographene and its residue compounds of nanographene-based nanoporous carbon.
    Hao SJ; Joly VL; Kaneko S; Takashiro J; Takai K; Hayashi H; Enoki T; Kiguchi M
    Phys Chem Chem Phys; 2014 Apr; 16(13):6273-82. PubMed ID: 24569838
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Octupolar merocyanine dyes: a new class of nonlinear optical chromophores.
    Poronik YM; Hugues V; Blanchard-Desce M; Gryko DT
    Chemistry; 2012 Jul; 18(30):9258-66. PubMed ID: 22730217
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exploring the potential of boron-doped nanographene as efficient charge transport and nonlinear optical material: A first-principles study.
    Irfan A; Chaudhry AR; Muhammad S; Al-Sehemi AG
    J Mol Graph Model; 2017 Aug; 75():209-219. PubMed ID: 28586703
    [TBL] [Abstract][Full Text] [Related]  

  • 51. From Fenestrindane towards Saddle-Shaped Nanographenes Bearing a Tetracoordinate Carbon Atom.
    Wong WS; Ng CF; Kuck D; Chow HF
    Angew Chem Int Ed Engl; 2017 Sep; 56(40):12356-12360. PubMed ID: 28766911
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Negatively Curved π-Expanded Pyracylene Comprising a Tropylium Cation.
    Borstelmann J; Bergner J; Rominger F; Kivala M
    Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202312740. PubMed ID: 37739928
    [TBL] [Abstract][Full Text] [Related]  

  • 53. New insights into thermal decomposition of polycyclic aromatic hydrocarbon oxyradicals.
    Liu P; Lin H; Yang Y; Shao C; Gu C; Huang Z
    J Phys Chem A; 2014 Dec; 118(48):11337-45. PubMed ID: 25386793
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Helical Nanographenes Containing an Azulene Unit: Synthesis, Crystal Structures, and Properties.
    Ma J; Fu Y; Dmitrieva E; Liu F; Komber H; Hennersdorf F; Popov AA; Weigand JJ; Liu J; Feng X
    Angew Chem Int Ed Engl; 2020 Mar; 59(14):5637-5642. PubMed ID: 31867754
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Curvature in graphene nanoribbons generates temporally and spatially focused electric currents.
    Gomes da Rocha C; Tuovinen R; van Leeuwen R; Koskinen P
    Nanoscale; 2015 May; 7(18):8627-35. PubMed ID: 25901473
    [TBL] [Abstract][Full Text] [Related]  

  • 56. First principles study of magnetism in nanographenes.
    Jiang DE; Sumpter BG; Dai S
    J Chem Phys; 2007 Sep; 127(12):124703. PubMed ID: 17902927
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hexa-Branched Nanographenes with Large Two-Photon Absorption.
    Zhao XJ; Ju YY; Su YM; Tang C; Zeng Q; Feng L; Wang C; Müllen K; Tan YZ
    J Am Chem Soc; 2023 Sep; 145(35):19333-19337. PubMed ID: 37638550
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Edge-Functionalized Nanographenes.
    Sekiya R; Haino T
    Chemistry; 2021 Jan; 27(1):187-199. PubMed ID: 32808344
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Shunting Phenylacetic Acid Catabolism for Tropone Biosynthesis.
    Li Y; Wang M; Zhao Q; Shen X; Wang J; Yan Y; Sun X; Yuan Q
    ACS Synth Biol; 2019 Apr; 8(4):876-883. PubMed ID: 30861343
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spin-spin and spin-orbit interactions in nanographene fragments: a quantum chemistry approach.
    Perumal S; Minaev B; Ågren H
    J Chem Phys; 2012 Mar; 136(10):104702. PubMed ID: 22423853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.