BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32159929)

  • 1. Synthesis and Biological Screening of New Lawson Derivatives as Selective Substrate-Based Inhibitors of Cytochrome bo
    Elamri I; Radloff M; Hohmann KF; Nimbarte VD; Nasiri HR; Bolte M; Safarian S; Michel H; Schwalbe H
    ChemMedChem; 2020 Jul; 15(14):1262-1271. PubMed ID: 32159929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In the respiratory chain of Escherichia coli cytochromes bd-I and bd-II are more sensitive to carbon monoxide inhibition than cytochrome bo
    Forte E; Borisov VB; Siletsky SA; Petrosino M; Giuffrè A
    Biochim Biophys Acta Bioenerg; 2019 Dec; 1860(12):148088. PubMed ID: 31669488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-chain aurachin D derivatives are selective inhibitors of E. coli cytochrome bd-I and bd-II oxidases.
    Radloff M; Elamri I; Grund TN; Witte LF; Hohmann KF; Nakagaki S; Goojani HG; Nasiri H; Hideto Miyoshi ; Bald D; Xie H; Sakamoto J; Schwalbe H; Safarian S
    Sci Rep; 2021 Dec; 11(1):23852. PubMed ID: 34903826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The terminal oxidase cytochrome bd-I confers carbon monoxide resistance to Escherichia coli cells.
    Nastasi MR; Borisov VB; Forte E
    J Inorg Biochem; 2023 Oct; 247():112341. PubMed ID: 37515940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochrome bd-I in Escherichia coli is less sensitive than cytochromes bd-II or bo'' to inhibition by the carbon monoxide-releasing molecule, CORM-3: N-acetylcysteine reduces CO-RM uptake and inhibition of respiration.
    Jesse HE; Nye TL; McLean S; Green J; Mann BE; Poole RK
    Biochim Biophys Acta; 2013 Sep; 1834(9):1693-703. PubMed ID: 23624261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcin J25 inhibits ubiquinol oxidase activity of purified cytochrome bd-I from Escherichia coli.
    Galván AE; Chalón MC; Ríos Colombo NS; Schurig-Briccio LA; Sosa-Padilla B; Gennis RB; Bellomio A
    Biochimie; 2019 May; 160():141-147. PubMed ID: 30790617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the ubiquinol oxidation sites in cytochromes bo and bd from Escherichia coli using aurachin C analogues.
    Miyoshi H; Takegami K; Sakamoto K; Mogi T; Iwamura H
    J Biochem; 1999 Jan; 125(1):138-42. PubMed ID: 9880809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan-136 in subunit II of cytochrome bo3 from Escherichia coli may participate in the binding of ubiquinol.
    Ma J; Puustinen A; Wikström M; Gennis RB
    Biochemistry; 1998 Aug; 37(34):11806-11. PubMed ID: 9718303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen as Acceptor.
    Borisov VB; Verkhovsky MI
    EcoSal Plus; 2015; 6(2):. PubMed ID: 26734697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the ubiquinol-binding site in the cytochrome bo3-ubiquinol oxidase of Escherichia coli.
    Welter R; Gu LQ; Yu L; Yu CA; Rumbley J; Gennis RB
    J Biol Chem; 1994 Nov; 269(46):28834-8. PubMed ID: 7961841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Ubiquinol Binding Site of Cytochrome
    Ding Z; Sun C; Yi SM; Gennis RB; Dikanov SA
    Biochemistry; 2019 Nov; 58(45):4559-4569. PubMed ID: 31644263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth.
    Forte E; Borisov VB; Falabella M; Colaço HG; Tinajero-Trejo M; Poole RK; Vicente JB; Sarti P; Giuffrè A
    Sci Rep; 2016 Mar; 6():23788. PubMed ID: 27030302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Searching for the low affinity ubiquinone binding site in cytochrome bo
    Choi SK; Lin MT; Ouyang H; Gennis RB
    Biochim Biophys Acta Bioenerg; 2017 May; 1858(5):366-370. PubMed ID: 28235459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginine 391 in subunit I of the cytochrome bd quinol oxidase from Escherichia coli stabilizes the reduced form of the hemes and is essential for quinol oxidase activity.
    Zhang J; Hellwig P; Osborne JP; Gennis RB
    J Biol Chem; 2004 Dec; 279(52):53980-7. PubMed ID: 15475358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-Bound Redox Enzyme Cytochrome
    Nastasi MR; Borisov VB; Forte E
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd.
    Miura H; Mogi T; Ano Y; Migita CT; Matsutani M; Yakushi T; Kita K; Matsushita K
    J Biochem; 2013 Jun; 153(6):535-45. PubMed ID: 23526305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibiotics LL-Z1272 identified as novel inhibitors discriminating bacterial and mitochondrial quinol oxidases.
    Mogi T; Ui H; Shiomi K; Omura S; Miyoshi H; Kita K
    Biochim Biophys Acta; 2009 Feb; 1787(2):129-33. PubMed ID: 19111521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochromes bd-I and bo
    Galván AE; Chalón MC; Schurig-Briccio LA; Salomón RA; Minahk CJ; Gennis RB; Bellomio A
    Biochim Biophys Acta Bioenerg; 2018 Feb; 1859(2):110-118. PubMed ID: 29107655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Location of the Substrate Binding Site of the Cytochrome bo
    Choi SK; Schurig-Briccio L; Ding Z; Hong S; Sun C; Gennis RB
    J Am Chem Soc; 2017 Jun; 139(24):8346-8354. PubMed ID: 28538096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring ND-011992, a quinazoline-type inhibitor targeting quinone reductases and quinol oxidases.
    Kägi J; Sloan W; Schimpf J; Nasiri HR; Lashley D; Friedrich T
    Sci Rep; 2023 Jul; 13(1):12226. PubMed ID: 37507428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.