BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32159940)

  • 21. Low-Cost Gel Polymer Electrolyte for High-Performance Aluminum-Ion Batteries.
    Liu Z; Wang X; Liu Z; Zhang S; Lv Z; Cui Y; Du L; Li K; Zhang G; Lin MC; Du H
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28164-28170. PubMed ID: 34102060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Quinone-Based Electrode for High-Performance Rechargeable Aluminum-Ion Batteries with a Low-Cost AlCl
    Kao YT; Patil SB; An CY; Huang SK; Lin JC; Lee TS; Lee YC; Chou HL; Chen CW; Chang YJ; Lai YH; Wang DY
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25853-25860. PubMed ID: 32406673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aluminum metal anode rechargeable batteries with sulfur-carbon composite cathodes and inorganic chloroaluminate ionic liquid.
    Tsuda T; Sasaki J; Uemura Y; Kojima T; Senoh H; Kuwabata S
    Chem Commun (Camb); 2022 Feb; 58(10):1518-1521. PubMed ID: 34935787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel One-Dimensional Hollow Carbon Nanotubes/Selenium Composite for High-Performance Al-Se Batteries.
    Li Z; Liu J; Huo X; Li J; Kang F
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45709-45716. PubMed ID: 31729859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Situ Construction of a Liquid Film Interface with Fast Ion Transport for Solid Sodium-Ion Batteries.
    Meng W; Liu J; Wang L; Dai L; Liu S
    Nano Lett; 2022 Jul; 22(13):5214-5220. PubMed ID: 35727226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of Si Hollow Structures as Promising Anode Materials through Reduction of Silica in AlCl
    Gao P; Huang X; Zhao Y; Hu X; Cen D; Gao G; Bao Z; Mei Y; Di Z; Wu G
    ACS Nano; 2018 Nov; 12(11):11481-11490. PubMed ID: 30395438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rechargeable Zinc-Aqueous Polysulfide Battery with a Mediator-Ion Solid Electrolyte.
    Gross MM; Manthiram A
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10612-10617. PubMed ID: 29561586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Low-Cost and Air-Stable Rechargeable Aluminum-Ion Battery.
    Meng P; Huang J; Yang Z; Wang F; Lv T; Zhang J; Fu C; Xiao W
    Adv Mater; 2022 Feb; 34(8):e2106511. PubMed ID: 34873764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Zn/V
    Hu P; Yan M; Zhu T; Wang X; Wei X; Li J; Zhou L; Li Z; Chen L; Mai L
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42717-42722. PubMed ID: 29155554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery.
    Shen X; Li Y; Qian T; Liu J; Zhou J; Yan C; Goodenough JB
    Nat Commun; 2019 Feb; 10(1):900. PubMed ID: 30796214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-cost batteries based on industrial waste Al-Si microparticles and LiFePO
    Zhang N; Sun C; Huang Y; Lv L; Wu Z; Zhu C; Wang X; Xiao X; Fan X; Chen L
    Dalton Trans; 2021 Jun; 50(24):8322-8329. PubMed ID: 34037045
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Designing solid-liquid interphases for sodium batteries.
    Choudhury S; Wei S; Ozhabes Y; Gunceler D; Zachman MJ; Tu Z; Shin JH; Nath P; Agrawal A; Kourkoutis LF; Arias TA; Archer LA
    Nat Commun; 2017 Oct; 8(1):898. PubMed ID: 29026067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Na Superionic Conductor-Type TiNb(PO
    Zhang J; Chen L; Niu L; Jiang P; Shao G; Liu Z
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39757-39764. PubMed ID: 31584258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High Current Enabled Stable Lithium Anode for Ultralong Cycling Life of Lithium-Oxygen Batteries.
    Guo H; Hou G; Li D; Sun Q; Ai Q; Si P; Min G; Lou J; Feng J; Ci L
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30793-30800. PubMed ID: 31385688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-Life and Highly Utilized Zinc Anode for Aqueous Batteries Enabled by Electrolyte Additives with Synergistic Effects.
    Liu B; Wu T; Ma F; Zhong C; Hu W
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18431-18438. PubMed ID: 35413179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An AlCl
    Li Z; Tian Z; Zhang C; Wang F; Ye C; Han F; Tan J; Liu J
    Nanoscale; 2021 Jun; 13(23):10468-10477. PubMed ID: 34076651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Introducing Artificial Solid Electrolyte Interphase onto the Anode of Aqueous Lithium Energy Storage Systems.
    Ahmed M; Yazdi AZ; Mitha A; Chen P
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30348-30356. PubMed ID: 30091585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative Study of Guanidine-, Acetamidine- and Urea-Based Chloroaluminate Electrolytes for an Aluminum Battery.
    Sumarlan I; Kunverji A; Lucio AJ; Hillman AR; Ryder KS
    J Phys Chem C Nanomater Interfaces; 2023 Sep; 127(38):18891-18901. PubMed ID: 37791096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.