These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 3215997)

  • 1. Length and myofilament spacing-dependent changes in calcium sensitivity of skeletal fibres: effects of pH and ionic strength.
    Martyn DA; Gordon AM
    J Muscle Res Cell Motil; 1988 Oct; 9(5):428-45. PubMed ID: 3215997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myofilament calcium sensitivity in skinned rat cardiac trabeculae: role of interfilament spacing.
    Konhilas JP; Irving TC; de Tombe PP
    Circ Res; 2002 Jan; 90(1):59-65. PubMed ID: 11786519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of equatorial x-ray reflections and stiffness to altered sarcomere length and myofilament lattice spacing in relaxed skinned cardiac muscle.
    Martyn DA; Adhikari BB; Regnier M; Gu J; Xu S; Yu LC
    Biophys J; 2004 Feb; 86(2):1002-11. PubMed ID: 14747335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sarcomere length dependence of the rate of tension redevelopment and submaximal tension in rat and rabbit skinned skeletal muscle fibres.
    McDonald KS; Wolff MR; Moss RL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):607-21. PubMed ID: 9218220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes.
    Cazorla O; Wu Y; Irving TC; Granzier H
    Circ Res; 2001 May; 88(10):1028-35. PubMed ID: 11375272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the lateral filament spacing of skinned muscle fibres when cross-bridges attach.
    Matsubara I; Goldman YE; Simmons RM
    J Mol Biol; 1984 Feb; 173(1):15-33. PubMed ID: 6608003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force-calcium relations in skinned twitch and slow-tonic frog muscle fibres have similar sarcomere length dependencies.
    Martyn DA; Coby R; Huntsman LL; Gordon AM
    J Muscle Res Cell Motil; 1993 Feb; 14(1):65-75. PubMed ID: 8478430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sarcomere length versus interfilament spacing as determinants of cardiac myofilament Ca2+ sensitivity and Ca2+ binding.
    Fuchs F; Wang YP
    J Mol Cell Cardiol; 1996 Jul; 28(7):1375-83. PubMed ID: 8841926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myofilament lattice spacing as a function of sarcomere length in isolated rat myocardium.
    Irving TC; Konhilas J; Perry D; Fischetti R; de Tombe PP
    Am J Physiol Heart Circ Physiol; 2000 Nov; 279(5):H2568-73. PubMed ID: 11045995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of osmotic compression on sarcomere structure and myofilament calcium sensitivity of isolated rat myocardium.
    Farman GP; Walker JS; de Tombe PP; Irving TC
    Am J Physiol Heart Circ Physiol; 2006 Oct; 291(4):H1847-55. PubMed ID: 16751283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stiffness of frog skinned muscle fibres at altered lateral filament spacing.
    Goldman YE; Simmons RM
    J Physiol; 1986 Sep; 378():175-94. PubMed ID: 3491904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmotic compression of skinned cardiac and skeletal muscle bundles: effects on force generation, Ca2+ sensitivity and Ca2+ binding.
    Wang YP; Fuchs F
    J Mol Cell Cardiol; 1995 Jun; 27(6):1235-44. PubMed ID: 8531205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral filamentary spacing in chemically skinned murine muscles during contraction.
    Matsubara I; Umazume Y; Yagi N
    J Physiol; 1985 Mar; 360():135-48. PubMed ID: 2580968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ordering of the myofilament lattice in muscle fibers.
    Matsuda T; Podolsky RJ
    J Mol Biol; 1986 May; 189(2):361-5. PubMed ID: 3746912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sarcomere length-dependent Ca2+ activation in skinned rabbit psoas muscle fibers: coordinated regulation of thin filament cooperative activation and passive force.
    Fukuda N; Inoue T; Yamane M; Terui T; Kobirumaki F; Ohtsuki I; Ishiwata S; Kurihara S
    J Physiol Sci; 2011 Nov; 61(6):515-23. PubMed ID: 21901640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Ca2+ binding of cardiac troponin reduces sarcomere length dependence of contractile activation independently of strong crossbridges.
    Korte FS; Feest ER; Razumova MV; Tu AY; Regnier M
    Am J Physiol Heart Circ Physiol; 2012 Oct; 303(7):H863-70. PubMed ID: 22865385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative cross-bridge activation of thin filaments contributes to the Frank-Starling mechanism in cardiac muscle.
    Smith L; Tainter C; Regnier M; Martyn DA
    Biophys J; 2009 May; 96(9):3692-702. PubMed ID: 19413974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Width and lattice spacing in radially compressed frog skinned muscle fibres at various pH values, magnesium ion concentrations and ionic strengths.
    Umazume Y; Onodera S; Higuchi H
    J Muscle Res Cell Motil; 1986 Jun; 7(3):251-8. PubMed ID: 3488330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Length-dependent activation and auto-oscillation in skeletal myofibrils at partial activation by Ca2+.
    Shimamoto Y; Suzuki M; Ishiwata S
    Biochem Biophys Res Commun; 2008 Feb; 366(1):233-8. PubMed ID: 18061572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of radial force and radial stiffness in Ca(2+)-activated skinned fibres of the rabbit psoas muscle.
    Brenner B; Yu LC
    J Physiol; 1991 Sep; 441():703-18. PubMed ID: 1816390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.