These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32160034)

  • 41. Estimating RNA Secondary Structure Folding Free Energy Changes with efn2.
    Zuber J; Mathews DH
    Methods Mol Biol; 2024; 2726():1-13. PubMed ID: 38780725
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bi-objective integer programming for RNA secondary structure prediction with pseudoknots.
    Legendre A; Angel E; Tahi F
    BMC Bioinformatics; 2018 Jan; 19(1):13. PubMed ID: 29334887
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Concepts and introduction to RNA bioinformatics.
    Gorodkin J; Hofacker IL; Ruzzo WL
    Methods Mol Biol; 2014; 1097():1-31. PubMed ID: 24639152
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An interactive framework for RNA secondary structure prediction with a dynamical treatment of constraints.
    Gaspin C; Westhof E
    J Mol Biol; 1995 Nov; 254(2):163-74. PubMed ID: 7490740
    [TBL] [Abstract][Full Text] [Related]  

  • 45. INFO-RNA--a server for fast inverse RNA folding satisfying sequence constraints.
    Busch A; Backofen R
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W310-3. PubMed ID: 17452349
    [TBL] [Abstract][Full Text] [Related]  

  • 46. RNA secondary structure design.
    Burghardt B; Hartmann AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021920. PubMed ID: 17358380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design of highly active double-pseudoknotted ribozymes: a combined computational and experimental study.
    Yamagami R; Kayedkhordeh M; Mathews DH; Bevilacqua PC
    Nucleic Acids Res; 2019 Jan; 47(1):29-42. PubMed ID: 30462314
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conformational features of topologically classified RNA secondary structures.
    Chiu JK; Chen YP
    PLoS One; 2012; 7(7):e39907. PubMed ID: 22792195
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An efficient algorithm for planar drawing of RNA structures with pseudoknots of any type.
    Byun Y; Han K
    J Bioinform Comput Biol; 2016 Jun; 14(3):1650009. PubMed ID: 26932273
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An RNA folding algorithm including pseudoknots based on dynamic weighted matching.
    Liu H; Xu D; Shao J; Wang Y
    Comput Biol Chem; 2006 Feb; 30(1):72-6. PubMed ID: 16321572
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics.
    Reeder J; Giegerich R
    BMC Bioinformatics; 2004 Aug; 5():104. PubMed ID: 15294028
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RNA secondary structures in a polymer-zeta model how foldings should be shaped for sparsification to establish a linear speedup.
    Jin EY; Nebel ME
    J Math Biol; 2016 Feb; 72(3):527-71. PubMed ID: 26001743
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transient RNA structure features are evolutionarily conserved and can be computationally predicted.
    Zhu JY; Steif A; Proctor JR; Meyer IM
    Nucleic Acids Res; 2013 Jul; 41(12):6273-85. PubMed ID: 23625966
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RNA design using simulated SHAPE data.
    Lotfi M; Zare-Mirakabad F; Montaseri S
    Genes Genet Syst; 2018 May; 92(6):257-265. PubMed ID: 28757510
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of consensus RNA secondary structures including pseudoknots.
    Witwer C; Hofacker IL; Stadler PF
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(2):66-77. PubMed ID: 17048382
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automated design of dynamic programming schemes for RNA folding with pseudoknots.
    Marchand B; Will S; Berkemer SJ; Ponty Y; Bulteau L
    Algorithms Mol Biol; 2023 Dec; 18(1):18. PubMed ID: 38041153
    [TBL] [Abstract][Full Text] [Related]  

  • 57. RNA folding kinetics using Monte Carlo and Gillespie algorithms.
    Clote P; Bayegan AH
    J Math Biol; 2018 Apr; 76(5):1195-1227. PubMed ID: 28780735
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RNA folding using quantum computers.
    Fox DM; MacDermaid CM; Schreij AMA; Zwierzyna M; Walker RC
    PLoS Comput Biol; 2022 Apr; 18(4):e1010032. PubMed ID: 35404931
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inverse folding with RNA-As-Graphs produces a large pool of candidate sequences with target topologies.
    Jain S; Tao Y; Schlick T
    J Struct Biol; 2020 Mar; 209(3):107438. PubMed ID: 31874236
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Watson-Crick pairing, the Heisenberg group and Milnor invariants.
    Gadgil S
    J Math Biol; 2009 Jul; 59(1):123-42. PubMed ID: 18830596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.