BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32160105)

  • 1. Potential for short-term migration of mineral oil hydrocarbons from coated and uncoated food contact paper and board into a fatty food simulant.
    Pack EC; Jang DY; Cha MG; Koo YJ; Kim HS; Yu HH; Park SC; Kim YS; Lim KM; Lee SH; Choi DW
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 May; 37(5):858-868. PubMed ID: 32160105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Migration of mineral oil hydrocarbons from food contact papers into food simulants and extraction from their raw materials.
    Pan JJ; Chen YF; Zheng JG; Hu C; Li D; Zhong HN
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 May; 38(5):870-880. PubMed ID: 33818316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentrations of migrated mineral oil/polyolefin oligomeric saturated hydrocarbons (MOSH/POSH) in Chinese commercial milk powder products.
    Zhang S; Liu L; Li B; Xie Y; Ouyang J; Wu Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 Aug; 36(8):1261-1272. PubMed ID: 31192768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of packaging materials to MOSH and POSH contamination of milk powder products during storage.
    Wan J; Zhang S; Liu L; Li B; Ouyang J; Wu Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 Jun; 38(6):1034-1043. PubMed ID: 33784215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening for mineral oil saturated and aromatic hydrocarbons in paper and cardboard directly by planar solid phase extraction and by its coupling to gas chromatography.
    Wagner M; Oellig C
    J Chromatogr A; 2019 Mar; 1588():48-57. PubMed ID: 30591246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survey of mineral oil hydrocarbons in Chinese commercial complementary foods for infants and young children.
    Liu L; Li B; Yang D; Ouyang J; Sui H; Wu Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 Sep; 38(9):1441-1455. PubMed ID: 34077340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The analysis of saturated and aromatic mineral oil hydrocarbons in dry foods and from recycled paperboard packages by online HPLC-GC-FID.
    Canavar Ö; Kappenstein O; Luch A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Dec; 35(12):2471-2481. PubMed ID: 30451585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineral oil migration from paper-based packaging into food, investigated by means of food simulants and model substances.
    Fengler R; Gruber L
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 May; 37(5):845-857. PubMed ID: 32023179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Update of on-line coupled liquid chromatography - gas chromatography for the analysis of mineral oil hydrocarbons in foods and cosmetics.
    Biedermann M; Munoz C; Grob K
    J Chromatogr A; 2017 Oct; 1521():140-149. PubMed ID: 28941808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of mineral oil in food: results of a Belgian market survey.
    Van Heyst A; Vanlancker M; Vercammen J; Van den Houwe K; Mertens B; Elskens M; Van Hoeck E
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Oct; 35(10):2062-2075. PubMed ID: 30199335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survey of mineral oil hydrocarbons in infant formula from the Chinese market.
    Sui H; Gao H; Chen Y; Ke R; Zhong H; Zhong Q; Liu Z; Song Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Jun; 37(6):1040-1048. PubMed ID: 32298214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a low-cost, lab-made Y-interface for liquid-gas chromatography coupling for the analysis of mineral oils in food samples.
    Zoccali M; Salerno TMG; Tranchida PQ; Mondello L
    J Chromatogr A; 2021 Jul; 1648():462191. PubMed ID: 34000596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive two-dimensional gas chromatography for characterizing mineral oils in foods and distinguishing them from synthetic hydrocarbons.
    Biedermann M; Grob K
    J Chromatogr A; 2015 Jan; 1375():146-53. PubMed ID: 25526977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saturated and aromatic mineral oil hydrocarbons from paperboard food packaging: estimation of long-term migration from contents in the paperboard and data on boxes from the market.
    Lorenzini R; Fiselier K; Biedermann M; Barbanera M; Braschi I; Grob K
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Dec; 27(12):1765-74. PubMed ID: 20967663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Migration kinetics of mineral oil hydrocarbons from recycled paperboard to dry food: monitoring of two real cases.
    Lorenzini R; Biedermann M; Grob K; Garbini D; Barbanera M; Braschi I
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(4):760-70. PubMed ID: 23406500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-line liquid chromatography-comprehensive two dimensional gas chromatography with dual detection for the analysis of mineral oil and synthetic hydrocarbons in cosmetic lip care products.
    Zoccali M; Tranchida PQ; Mondello L
    Anal Chim Acta; 2019 Feb; 1048():221-226. PubMed ID: 30598154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of pressurized liquid extraction (PLE) for rapid determination of mineral oil saturated (MOSH) and aromatic hydrocarbons (MOAH) in cardboard and paper intended for food contact.
    Moret S; Sander M; Purcaro G; Scolaro M; Barp L; Conte LS
    Talanta; 2013 Oct; 115():246-52. PubMed ID: 24054587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supercritical fluid chromatography as a rapid single-step method for the determination of mineral oil saturated and aromatic hydrocarbons in purified mineral oils for food and cosmetics applications.
    García-Cicourel AR; van de Velde B; Roskam G; Janssen HG
    J Chromatogr A; 2020 Mar; 1614():460713. PubMed ID: 31761438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mild mixed-solvent extraction for determination of total mineral oil hydrocarbon contaminants in milk powder products.
    Liu L; Li B; Ouyang J; Wu Y
    Food Chem; 2020 Dec; 333():127488. PubMed ID: 32682229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical Methods for the Determination of Mineral Oil Saturated Hydrocarbons (MOSH) and Mineral Oil Aromatic Hydrocarbons (MOAH)-A Short Review.
    Weber S; Schrag K; Mildau G; Kuballa T; Walch SG; Lachenmeier DW
    Anal Chem Insights; 2018; 13():1177390118777757. PubMed ID: 29887729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.