These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 32160206)
1. A landslide susceptibility map based on spatial scale segmentation: A case study at Zigui-Badong in the Three Gorges Reservoir Area, China. Yu X; Gao H PLoS One; 2020; 15(3):e0229818. PubMed ID: 32160206 [TBL] [Abstract][Full Text] [Related]
2. A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China. Yu X; Wang Y; Niu R; Hu Y Int J Environ Res Public Health; 2016 May; 13(5):. PubMed ID: 27187430 [TBL] [Abstract][Full Text] [Related]
3. Assessment of Landslide Susceptibility Based on Multiresolution Image Segmentation and Geological Factor Ratings. Duan G; Zhang J; Zhang S Int J Environ Res Public Health; 2020 Oct; 17(21):. PubMed ID: 33120996 [TBL] [Abstract][Full Text] [Related]
4. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105 [TBL] [Abstract][Full Text] [Related]
5. Combined SBAS-InSAR and PSO-RF Algorithm for Evaluating the Susceptibility Prediction of Landslide in Complex Mountainous Area: A Case Study of Ludian County, China. Xiao B; Zhao J; Li D; Zhao Z; Zhou D; Xi W; Li Y Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298394 [TBL] [Abstract][Full Text] [Related]
6. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China). Wang Y; Sun D; Wen H; Zhang H; Zhang F Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32545618 [TBL] [Abstract][Full Text] [Related]
7. Application of Bagging, Boosting and Stacking Ensemble and EasyEnsemble Methods for Landslide Susceptibility Mapping in the Three Gorges Reservoir Area of China. Wu X; Wang J Int J Environ Res Public Health; 2023 Mar; 20(6):. PubMed ID: 36981886 [TBL] [Abstract][Full Text] [Related]
8. Susceptibility mapping and zoning of highway landslide disasters in China. Yin C; Li H; Che F; Li Y; Hu Z; Liu D PLoS One; 2020; 15(9):e0235780. PubMed ID: 32886925 [TBL] [Abstract][Full Text] [Related]
9. Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors. Luo X; Lin F; Zhu S; Yu M; Zhang Z; Meng L; Peng J PLoS One; 2019; 14(4):e0215134. PubMed ID: 30973936 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture. Li Y; Deng X; Ji P; Yang Y; Jiang W; Zhao Z Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36361126 [TBL] [Abstract][Full Text] [Related]
11. GIS-based landslide susceptibility mapping in the Longmen Mountain area (China) using three different machine learning algorithms and their comparison. Huang Z; Peng L; Li S; Liu Y; Zhou S Environ Sci Pollut Res Int; 2023 Aug; 30(38):88612-88626. PubMed ID: 37440134 [TBL] [Abstract][Full Text] [Related]
12. Establishment of Landslide Groundwater Level Prediction Model Based on GA-SVM and Influencing Factor Analysis. Cao Y; Yin K; Zhou C; Ahmed B Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033307 [TBL] [Abstract][Full Text] [Related]
13. GIS-based landslide susceptibility zoning using a coupled model: a case study in Badong County, China. Wang P; Deng H; Liu Y Environ Sci Pollut Res Int; 2024 Jan; 31(4):6213-6231. PubMed ID: 38146028 [TBL] [Abstract][Full Text] [Related]
14. Research on the influence of different sampling resolution and spatial resolution in sampling strategy on landslide susceptibility mapping results. Yu X; Chen H Sci Rep; 2024 Jan; 14(1):1549. PubMed ID: 38233453 [TBL] [Abstract][Full Text] [Related]
15. Landslide Susceptibility Mapping with Integrated SBAS-InSAR Technique: A Case Study of Dongchuan District, Yunnan (China). Zhu Z; Gan S; Yuan X; Zhang J Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898090 [TBL] [Abstract][Full Text] [Related]
16. A novel evolutionary combination of artificial intelligence algorithm and machine learning for landslide susceptibility mapping in the west of Iran. Shen Y; Ahmadi Dehrashid A; Bahar RA; Moayedi H; Nasrollahizadeh B Environ Sci Pollut Res Int; 2023 Dec; 30(59):123527-123555. PubMed ID: 37987977 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Different Landslide Susceptibility Models for a Local Scale in the Chitral District, Northern Pakistan. Aslam B; Maqsoom A; Khalil U; Ghorbanzadeh O; Blaschke T; Farooq D; Tufail RF; Suhail SA; Ghamisi P Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590797 [TBL] [Abstract][Full Text] [Related]
18. Study on landslide susceptibility mapping based on rock-soil characteristic factors. Yu X; Zhang K; Song Y; Jiang W; Zhou J Sci Rep; 2021 Jul; 11(1):15476. PubMed ID: 34326404 [TBL] [Abstract][Full Text] [Related]
19. Landslide susceptibility mapping in an area of underground mining using the multicriteria decision analysis method. Arca D; Kutoğlu HŞ; Becek K Environ Monit Assess; 2018 Nov; 190(12):725. PubMed ID: 30430322 [TBL] [Abstract][Full Text] [Related]
20. Zonation of Landslide Susceptibility in Ruijin, Jiangxi, China. Zhou X; Wu W; Lin Z; Zhang G; Chen R; Song Y; Wang Z; Lang T; Qin Y; Ou P; Huangfu W; Zhang Y; Xie L; Huang X; Fu X; Li J; Jiang J; Zhang M; Liu Y; Peng S; Shao C; Bai Y; Zhang X; Liu X; Liu W Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34072874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]